• Title/Summary/Keyword: Mechanical Load Test

Search Result 1,540, Processing Time 0.031 seconds

An Experimental Study on the Joints in Ultra High Performance Precast Concrete Segmental Bridges (초고성능 프리캐스트 콘크리트 세그멘탈 교량 접합부에 대한 실험 연구)

  • Lee, Chang-Hong;Chin, Won-Jong;Choi, Eun-Suk;Kim, Young-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.235-244
    • /
    • 2011
  • Failures of segmental bridges have been attributed to the inadequate joint connection techniques, which led to corrosion of the post-tensioned tendons connecting the segmental joints. The principal objective of this study is to evaluate the performances of the in-situ cast joint and epoxy applied shear key joints as a function of shear and ultimate strengths. Furthermore, shear behavior and strength of shear key joints in ultra high performance precasted concrete segmental bridges are experimentally evaluated to understand its shear failure behavior. The test parameters of shear key shape and type, load-displacement relations, cracking behavior, concrete strength, and fracture modes are considered in the study. Also, several parameters which influence the mechanical behavior of the shear key joint are analyzed. Based on the study results, the optimal shear key shape and joint type are proposed for the joint design and analysis guidelines.

A Study on the Development of Ship's Stern Tube Sealing System(I) -Based on Lip Seals- (선미관 밀봉장치 개발에 관한 연구 (I) - 맆 시일을 중심으로-)

  • 김영식;전효중;왕지석;정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.29-45
    • /
    • 1991
  • Lip type stern tube sealing systems have used in almost all the middle or large ships which are being constructed in these days. It seems that the pressure fluctuation of the seal ring interspace, the cross-section profile and the materials quality of the seal rings have great effects on the sealing fuction of this sealing system. In this paper, the mechanical movement of lip seal ring which plays the most important role in stern tube sealing system and the possibility of leakage caused by pressure fluctuation are studied by theory and experiment. Using the finite element method for the axi-symetric object which receives the torsional load, the displacement and stress analysis of the seal rings, and also the possibility of crack occurance is checked by theoretical analysis. If the force which seal ring lip periphery receives is too small, there will be the possibility of leakage caused by the pressure fluctuation of the seal ring interspace, and if this force is too large, the frictional force between the seal ring and the liner will become problematical. The possibility of leakage caused by hardening of seal ring materials and creep phenomena of tested seal rings are also examined. The trial seal rings were designed and manufactured using the program of displacement and stress analysis developed in this study and the experimental apparatus to test the trial seal rings was also designed and manufactured. This trial seal rings were fitted in the experimental apparatus which was made in the same form as an actual stern tube. The one side of this apparatus was filled with sea water and the other side of it was filled with the lubricating oil. The leakage of oil and sea water was checked and the temperature was measured, rotating the propeller shaft at the constant velocity by D.C. motor. It was proved that the trial seal rings made in Viton rubber functioned excellenty but the trial seal rings made in N.B.R. rubber had problem in its durability.

  • PDF

Research and Development of a 2.9 Liter Light-duty DME Truck Using Common Rail Fuel Injection Systems (커먼레일 연료분사 시스템을 장착한 2.9 리터급 경량 DME 트럭의 연구 및 개발)

  • Jeong, Soo-Jin;Park, Jung-Kwon;Oh, Se-Doo;Lee, Gee-Soo;Lim, Ock-Taek;Pyo, Young-Dug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.6
    • /
    • pp.107-116
    • /
    • 2012
  • In this study, the trucks(2.9-liter) have been developed to use DME as fuel, and performance test of the vehicle's DME engine, power, emissions, fuel economy and vehicle aspects was conducted. For experiments, the fuel system(common-rail injectors and high-pressure pump included) and the engine control logic was developed, and ECU mapping was performed. As a result, the rail pressure from 40MPa to approximately 65% increase compared to the base injector has been confirmed that. Also, the pump discharge flow is 15.5 kg/h when the fuel rail pressure is 400rpm(40MPa), and the pump discharge flow is 92.1 kg/h when the fuel rail pressure is 2,000rpm(40MPa). The maximum value of full-load torque capability is 25.5 kgfm(based on 2,000 rpm), and more than 90% compared to the level of the diesel engine were obtained. The DME vehicle was developed in this study, 120 km/h can drive to the stable, and calculated in accordance with the carbon-balance method of fuel consumptions is 5.7 km/L.

Two-dimensional isotropic patterns for core materials in applications to sandwich structures (샌드위치 구조물 내에서의 응용과 관련된 2차원 단위 셀 형상을 지닌 심재에 대한 연구)

  • Kim, Beom-Keun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.82-90
    • /
    • 2004
  • The mechanical characteristics of three types of core with two-dimensional isotropic patterns-triangular, hexagonal and starcell-were studied in applications to sandwich structures. The Young's modulus and shear modulus were calculated for the three core types in the direction normal to the faces. The compressive buckling strength and shear buckling strength were calculated by modeling each cell wall of the core as a plate under compressive or shear load. To verify this model, tests were conducted on scaled specimens to measure the compressive buckling strength of each core. The bending flexibilites of the three cores were also studied. Compliances for the three cores were measured using biaxial flexural tests. The three isotropic core patterns exhibited distinct characteristics. In the direction normal to the faces, all three cores had the same stiffness. However, the starcell core exhibited high flexibility compared to the other cores, indicating potential for application to curved sandwich structures.

A STUDY ON THE FRACTURE OF DENTAL AMALGAM (치과용 아말감의 파절에 관한 연구)

  • Huh, Hyeon-Do;Um, Chung-Moon
    • Restorative Dentistry and Endodontics
    • /
    • v.9 no.1
    • /
    • pp.101-106
    • /
    • 1983
  • It was the purpose of this study to investigate the fracture mode of dental amalgam by observing the crack propagation, and to relate this to the microstructure of the amalgam. Caulk 20th Century Regular, Caulk Spherical, Dispersalloy, and Tytin amalgam alloys were used for this study. After each amalgam alloy and Hg measured exactly by the balance was triturated by the mechanical amalgamator (Capmaster, S.S. White), the triturated mass was inserted into the cylindrical metal mold which was 4 mm in diameter and 12 mm in height and was pressed by the Instron Universal Testing Machine at the speed of 1mm/min with 120Kg. The specimen removed from the mold was stored in the room temperature for a week. This specimen was polished with the emery papers from #100 to #200 and finally on the polishing cloth with 0.06${\mu}Al_2O_3$ powder suspended in water. The specimen was placed on the Instron testing machine in the method similar to the diametral tensile test and loaded at the crosshead speed of 0.05mm/min. The load was stopped short of fracture. The cracks on the polished surface of specimen was examined with scanning electron microscope (JSM-35) and analyzed by EPMA (Electron probe microanalyzer). The following results were obtained. 1. In low copper lathe-cut amalgam, the crack went through the voids and ${\gamma}_2$ phase, through the ${\gamma}_1$ phase around the ${\gamma}$ particles. 2. In low copper spherical amalgam, it was observed that the crack passed through the ${\gamma}_2$ and ${\gamma}_1$ phase, and through the boundary between the ${\gamma}_1$ and ${\gamma}$ phase. 3. In high copper dispersant (Dispersalloy) amalgam, the crack was found to propagate at the interface between the ${\gamma}_1$ matrix and reaction ring around the dispersant (Ag-Cu) particles, and to pass through the Ag-Sn particles. 4. In high copper single composition (Tytin) amalgam, the crack went through the ${\gamma}_1$ matrix between ${\eta}$ crystals, and through the unreacted alloy particle (core).

  • PDF

Applying the Ferrocement Concept in Construction of Concrete Beams Incorporating Reinforced Mortar Permanent Forms

  • Fahmy, Ezzat H.;Shaheen, Yousry B.I.;Abdelnaby, Ahmed Mahdy;Abou Zeid, Mohamed N.
    • International Journal of Concrete Structures and Materials
    • /
    • v.8 no.1
    • /
    • pp.83-97
    • /
    • 2014
  • This paper presents the results of an investigation aimed at developing reinforced concrete beams consisting of precast permanent U-shaped reinforced mortar forms filled with different types of core materials to be used as a viable alternative to the conventional reinforced concrete beam. To accomplish this objective, an experimental program was conducted and theoretical model was adopted. The experimental program comprised casting and testing of thirty beams of total dimensions $300{\times}150{\times}2,000mm$ consisting of permanent precast U-shaped reinforced mortar forms of thickness 25 mm filled with the core material. Three additional typical reinforced concrete beams of the same total dimensions were also cast to serve as control specimens. Two types of single-layer and double-layers steel meshes were used to reinforce the permanent U-shaped forms; namely welded wire mesh and X8 expanded steel mesh. Three types of core materials were investigated: conventional concrete, autoclaved aerated lightweight concrete brick, and recycled concrete. Two types of shear connections between the precast permanent reinforced mortar form and the core material were investigated namely; adhesive bonding layer between the two surfaces, and mechanical shear connectors. The test specimens were tested as simple beams under three-point loadings on a span of 1,800 mm. The behavior of the beams incorporating the permanent forms was compared to that of the control beams. The experimental results showed that better crack resistance, high serviceability and ultimate loads, and good energy absorption could be achieved by using the proposed beams which verifies the validity of using the proposed system. The theoretical results compared well with the experimental ones.

Heat load characteristic analysis of conduction cooled 10kJ HTS SMES (전도 냉각형 10kJ 고온 초전도 에너지 저장장치의 열 부하 특성 해석)

  • Kim, Kwang-Min;Kim, A-Rong;Kim, Jin-Geun;Park, Hae-Yong;Park, Min-Won;Yu, In-Keun;Kim, Seok-Ho;Sim, Ki-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.2219_2220
    • /
    • 2009
  • The characteristics of the Superconducting Magnetic Energy Storage (SMES) system are faster response, longer life time, more economical, and environment friendly than other Uninterruptible Power Supply (UPS) using battery. Fast charge and discharge time of SMES system can provide powerful performance of improving power quality in the grid. In order to demonstrate the effectiveness of SMES, the authors make a 10kJ SMES system for connection with RTDS (Real Time Digital Simulator). Because the characteristics of superconducting magnet are very important in SMES system, the necessary items such as thermal characteristic, mechanical stress and protection circuit should be considered. In this paper, the authors experimented thermal characteristics of the 10kJ SMES system. The experiment was accomplished using a simulation coils made of aluminium. It has same dimension of the 10kJ class HTS SMES coil. The coil was cooled with GM (Gifford -McMahon) cryocooler through the OFHC (Oxgen Free High thermal Conductivity) conduction bar. The test results of cool down and heat loads characteristics of the simulation coils are described in detail.

  • PDF

Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process (이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발)

  • Park Hee-Cheon;Jeong Ho-Seung;Cho Jong-Rac;Lee Nak-Kyu;Oh Jung-Seok;Han Mvoung-Seoup
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.8
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.

Analysis of the Effect of Small-Bore Piping Resonance Frequency on Defect of Welding Area (용접부의 결함이 소구경배관의 공진 주파수에 미치는 영향 분석)

  • Yoon, Min Soo;Song, Ki O;Lee, Jae Min;Ha, Seung Woo;Cho, Sun Young
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.9-14
    • /
    • 2018
  • The piping system of a nuclear power plant plays a role of transferring high energy fluid to equipment and various devices. The safety and soundness of these piping systems are very closely related to the operability of the power plant. In the case of a welded part of a small diameter pipe, it may grow as a microcrack due to a lack of penetration, and it may grow to a size that affects the safety of the pipe due to the influence of mechanical vibration and fatigue load. Resonance refers to an increase in energy as the natural frequency of an object coincides with the frequency applied to the external force. When this resonance occurs, the frequency is the resonance frequency. In this study, when defects exist in the welds of small diameter pipe, the natural frequency of the pipe changes and resonance may occur. Since these resonances are likely to cause fatigue damage to the piping, resonance frequency changes due to the size and shape of the defects are analyzed and evaluated. As a result of the vibration test, the resonance frequency tended to decrease as the depth of the defect deepened, and the influence was larger when the defect existed at the bottom of the top of the trough. Also, it was confirmed that the Transverse cracks had an effect on the resonance frequency in the presence of the cracks in the weld bead, compared to the longitudinal cracks. As a result of this study, it is expected that the cause of the defect and the condition of the pipe can be monitored because the resonance frequency tendency according to the shape of the crack is analyzed.

Prediction of the welding distortion of large steel structure with mechanical restraint using equivalent load methods

  • Park, Jeong-ung;An, Gyubaek
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.3
    • /
    • pp.315-325
    • /
    • 2017
  • The design dimension may not be satisfactory at the final stage due to the welding during the assembly stage, leading to cutting or adding the components in large structure constructions. The productivity is depend on accuracy of the welding quality especially at assembly stage. Therefore, it is of utmost importance to decide the component dimension during each assembly stage considering the above situations during the designing stage by exactly predicting welding deformation before the welding is done. Further, if the system that predicts whether welding deformation is equipped, it is possible to take measures to reduce deformation through FE analysis, helping in saving time for correcting work by arresting the parts which are prone to having welding deformation. For the FE analysis to predict the deformation of a large steel structure, calculation time, modeling, constraints in each assembly stage and critical welding length have to be considered. In case of fillet welding deformation, around 300 mm is sufficient as a critical welding length of the specimen as proposed by the existing researches. However, the critical length in case of butt welding is around 1000 mm, which is far longer than that suggested in the existing researches. For the external constraint, which occurs as the geometry of structure is changed according to the assembly stage, constraint factor is drawn from the elastic FE analysis and test results, and the magnitude of equivalent force according to constraint is decided. The comparison study for the elastic FE analysis result and measurement for the large steel structure based on the above results reveals that the analysis results are in the range of 80-118% against measurement values, both matching each other well. Further, the deformation of fillet welding in the main plate among the total block occupies 66-89%, making welding deformation in the main plate far larger than the welding deformation in the longitudinal and transverse girders.