• Title/Summary/Keyword: Mechanical Load Test

Search Result 1,540, Processing Time 0.026 seconds

Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가)

  • Heur, Moo-Won;Chun, Young-Soo;Hwang, Jae-Seung;Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.23-34
    • /
    • 2015
  • Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

A Study on the Prediction of Ultimate Stress of Tendon in Unbonded Prestressed Concrete Beams without Slip (비부착 PSC 보에서 슬립이 없는 강선의 극한 응력 예측에 관한 연구)

  • Hong, Sung-Su;Yoo, Sung-Won;Park, Seung-Bum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4A
    • /
    • pp.537-548
    • /
    • 2008
  • Recently, the prestressed unbonded concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. The purpose of the present paper is therefore to evaluate the flexural behavior and to propose the equation of ultimate tendon stress by performing static flexural test according to span/depth, concrete compression strength, reinforcement ratio and the effect of existing bonded tendon. From experimental results, for cracking, yielding and ultimate load, the effect of reinforcement ratio was more effective than concrete compression strength, and the beams having high strength concrete had a good performance than having low concrete, but there was no difference between high strength and low strength. And as L/dp was larger, test beams had a long region of ductility. This means that unbonded tendon has a large contribution after reinforcement yielding. Especially, the equation of ACI-318 was not match with test results and had no correlations. After analysis of test results, the equation of ultimate unbonded tendon stress without slip was proposed, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of unbonded tendons without slip, analysis and design.

A COMPARATIVE STUDY ON THE CHEMICAL COMPOSITION AND MECHANICAL PROPERTIES OF FOUR LOW-GOLD-CONTENT DENTAL CASTING ALLOYS MANUFACTURED IN KOREA (한국산(韓國産) 치과주조용(齒科鑄造用) 저금함유합금(低金含有合金)의 조성(組成) 및 기계적(機械的) 성질(性質)에 관(關)한 비교연구(比較硏究))

  • Chang, Ik-Tae;Yang, Jae-Ho;Kim, Chang-Whe;Kim, Kwang-Nam;Lee, Sun-Hyung;Kim, Yung-Soo;Chang, Wan-Shik
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 1981
  • This study was conducted to determine the chemical composition and the mechanical properties of four commercially available low gold-based crown and bridge alloy produced in Korea. Four dental casting gold-silver-palladium alloys, i.e., A, B, C and D (code of alloys) were selected for the evaluation of chemical composition, ultimate tensile strength, elongation. values and Vickers hardness. The chemical composition of test specimens was analyzed by both emission spectrography and wet gravitation method with a 1.5gm of low gold ingot. The tensile properties and Vickers hardness was determined with cast specimens treated in following three conditions; as-cast, softening heat treatment and hardening heat treatment. The tensile testing bars were cast in accordance with the model designed by Gettleman and Harrison (1969) which was modified from the A. D. A. Specification No. 14 for dental chromium-cobalt casting alloy. Nine tensile test specimens were made from a split silicone mold for each of the test alloys to the size of 2.5mm in diameter and a gauge length of 10mm. All four alloys were handled in accordance with conventional methods used in Type III gold alloys. Ultimate tensile strength and elongation were measured on an Instron Universal Tensile Testing Machine (Model 1125, Japan) operated at a crosshead rate of 0.1cm/min. Elongation values were measured using Digital Measuring Microscope (MS-152, FUSOH, Japan). Vickers hardness was determined with a Vickers Hardness Tester (Model VKH-l, Japan) at a 1.0kg load on a mounted tensile test specimen. The following results were obtained from this study; 1. All tested alloys were composed of Au, Ag, Pd, Cu, Zn and Fe in common. The composition rate of gold for all four alloys was found in the range of $42{\sim}47$ weight % as shown below. Alloy A; Au 45%, Ag 40.2%, Pd 5.76%, others 9.04%. Alloy B; Au 47.1%, Ag 29.03%, Pd 6.98%, others 16.92%. Alloy C; Au 45%, .Ag 26.9%, Pd 6.83%, others 21.07%. Alloy D; Au 41.8%, Ag 34.4%, Pd 6.95%, others 16.85%. 3. The ultimate tensile strength of the four alloys was in the range of $31{\sim}82kg/mm^2$. The test results were shown in the below order from the highest value; As-cast condition; D, B, C, A. Softening heat treament; B, C, D, A. Hardening heat treatment; D, B, C, A. 4. The test :results of the elongation rate for each alloy were in the range of $0.5{\sim}18%$. The test results were shown in the below order from the highest value; As-cast condition; A, D, B, C. Softening heat treatment; A, C, D, B. Hardening heat treatment; C, D, B, A. 5. Vickers hardness for each of the four alloys was in the range of $120{\sim}230$. The test results were shown in the below order from the highest value; As-cast condition; C, B, D, A Softening heat treatment; D, B, C, A. Hardening heat treatment; D, A, C, B. 6. There were no differences in the physical properties between as-cast condition and softening heat treatment.

  • PDF

The Fire Resistant Performance of RC Column with Confined Lateral Reinforcement According to Fire Exposure Condition (횡방향 철근으로 구속된 철근콘크리트 기둥의 화재 노출조건에 따른 내화성능)

  • Choi, Kwang Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.311-318
    • /
    • 2018
  • When reinforced concrete structures are exposed to fire, their mechanical properties such as compressive strength, elasticity coefficient and rebar yield strength, are degraded. Therefore, the structure's damage assessment is essential in determining whether to dismantle or augment the structure after a fire. In this study, the confinement effect of lateral reinforcement of RC column according to the numbers of fire exposure face and stirrup was verified by fire resistant test with the heating temperatures of $400^{\circ}C$, $600^{\circ}C$ and $800^{\circ}C$. The test results showed that the peak stress decreases and peak strain increases as the temperature is getting higher, also transverse ties are helpful in improving the compressive resistance of concrete subjected to high temperature. Based on the results of this study, the residual stress of confined concrete under thermal damage is higher at the condition of more lateral reinforcement ratio and less fire exposure faces. The decreasing ratio of elastic modulus of more confined and less exposure faces from the relationship of load and displacement was also smaller than that of opposite conditions.

An Experimental Study on the Dynamic Increase Factor and Strain Rate Dependency of the Tensile Strength of Rock Materials (암석재료 인장강도의 동적 증가계수 및 변형률 속도 의존성에 대한 실험적 연구)

  • Oh, Se-Wook;Choi, Byung-Hee;Min, Gyeong-Jo;Jung, Yong-Bok;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.10-21
    • /
    • 2021
  • Brittle materials such as rocks and concretes exhibit large strain-rate dependency under dynamic loading conditions. This means that the mechanical properties of such materials can significantly be varied according to load velocity. Thus, the strain-rate dependency is recognized as one of the most important considerations in solving problems of blast engineering or rock dynamics. Unfortunately, however, studies for characterizing the dynamic properties of domestic rocks and other brittle materials are still insufficient in the country. In this study, dynamic tensile tests were conducted using the Hopkinson pressure bar apparatus to characterize the dynamic properties of Geochang granite and high-strength concrete specimens. The dynamic Brazilian disc test, which is suggested by ISRM, and the spalling method were applied. In general, the latter is believed to have some advantages in experiments under high-strain rate deformation. It was found from the tests that there were no significant difference between the dynamic tensile strengths obtained from the two different test methods for the two materials given. However, this was not the expected result before the tests. Actually, authors expected that there be some differences between them. Hence, it is thought that further investigations are needed to clarify this results.

Influence of varying cement types and abutment heights on pull-off force of zirconia restorations (시멘트의 종류 및 임플란트 지대주 높이가 지르코니아 수복물의 제거력에 미치는 영향)

  • Yeong-Jun Jung;Yu-Lee Kim;Ji-Hye Jung;Nae-Un Kang;Hyun-Jun Kong
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.40 no.2
    • /
    • pp.64-71
    • /
    • 2024
  • Purpose: The purpose of this study is to evaluate Ti-base abutment's three different heights and three different cement types on the pull-off force of zirconia-based restorations. Materials and Methods: A total of 90 fixture lab analogs were embedded in auto polymerizing resin bloack. 90 Ti-base abutments heights of 3 mm, 5 mm, 7 mm were scanned and zirconia restoration were prepared from scanned files. Zirconia restoration were cemented with three different types of cements (temporary, semi-permanent, permanent) following manufacturer's instructions. All 90 specimens were placed and tested in a universal testing machine for pull-out testing. Retention was measured by recording the force at load drop. Statistical analysis was performed using Kruskal-Wallis test for detecting whether there are any statistical significance along cement types or abutment heights. After that, Mann-Whitney test was used for figuring out differences regarding abutment height and the comparison between 3 cements. Results: Temp bond showed significantly lower pull-off force compared to Fujicem regardless of any abutment height. However, there were significant differences between Cem-implant and Fujicem in abutment height of 3 mm and 7 mm, but there was no significant difference in 5 mm. Temp bond and Cem-implant had significant differences only in abutment height of 5 mm. Conclusion: Although Ti-base abutment height did not influenced zirconia restorations' retentiveness, cement types showed significant differences.

A Study on the Creep Deformation Characteristic of AZ31 Mg Alloy at High Temperature (AZ3l 마그네슘 합금의 고온 크리이프 변형특성에 관한 연구)

  • An Jungo;Kang Daemi;Koo Yang;Sim Sungbo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.186-192
    • /
    • 2005
  • The apparent activation energy Qc, the applied stress exponent n, and rupture life have been determined from creep test results of AZ31 Mg alloy over the temperature range of 200$^{\circ}C$ to 300$^{\circ}C$ and the stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller with data acquisition computer. At the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy fur the creep deformation was nearly equal to that of the self diffusion of Mg alloy including aluminum From the above results, at the temperature of $200^{\circ}C{\sim}220^{\circ}C$ the creep deformation for AZ31 Mg alloy seemed to be controlled by dislocation climb but controlled by dislocation glide at $280^{\circ}C{\sim}300^{\circ}C$ .And relationship beween rupture time and stress at around the temperature of $200^{\circ}C{\sim}220^{\circ}C$ and under the stress level of 62.43~93.59 MPa, and again at around the temperature of $280^{\circ}C{\sim}300^{\circ}C$ and under the stress level of 23.42~39.00 MPa, respectively, appeard as fullow; log$\sigma$=-0.18(T+460)(logtr+21)+5.92, log$\sigma$ = -0.25(T+460)(logtr+21)+8.02 Also relationship beween rupture time and steady state creep rate appears as follow; ln$\dot$ =-0.881ntr-2.45

Evaluation of Adhesive Strength for Nano-Structured Thin Film by Scanning Acoustic Microscope (초음파 현미경을 이용한 나노 박막의 접합 강도 평가)

  • Park, Tae-Sung;Kwak, Dong-Ryul;Park, Ik-Keun;Miyasaka, Chiaki
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.393-400
    • /
    • 2012
  • In recent years, nano-structured thin film systems are often applied in industries such as MEMS/NEMS device, optical coating, semiconductor or like this. Thin films are used for many and varied purpose to provide resistance to abrasion, erosion, corrosion, or high temperature oxidation and also to provide special magnetic or dielectric properties. Quite a number of articles to evaluate the characterization of thin film structure such as film density, film grain size, film elastic properties, and film/substrate interface condition were reported. Among them, the evaluation of film adhesive to substrate has been of great interest. In this study, we fabricated the polymeric thin film system with different adhesive conditions to evaluate the adhesive condition of the thin film. The nano-structured thin film system was fabricated by spin coating method. And then V(z) curve technique was applied to evaluate adhesive condition of the interface by measuring the surface acoustic wave(SAW) velocity by scanning acoustic microscope(SAM). Furthermore, a nano-scratch technique was applied to the systems to obtain correlations between the velocity of the SAW propagating within the system including the interface and the shear adhesive force. The results show a good correlation between the SAW velocities measured by acoustic spectroscope and the critical load measured by the nano-scratch test. Consequently, V(z) curve method showed potentials for characterizing the adhesive conditions at the interface by acoustic microscope.

Behavior of FRP-Concrete Composite Decks with the Mechanical Connection (기계적 합성이 적용된 FRP-콘크리트 합성 바닥판의 거동 분석)

  • Kim, Sung-Tae;Park, Sung-Yong;Cho, Jeong-Rae;Kim, Byung-Suk;Cho, Keun-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.609-616
    • /
    • 2010
  • FRP-concrete composite deck, an innovative system, is composed of concrete in the top and FRP panel in the bottom. Bottom FRP panel can reduce self weight and improve workability. This system requires strong connection between FRP and concrete. Therefore coarse sand coating was previously applied on FRP to improve the bonding. In this study, concrete wedge method is newly introduced to enhance both vertical bond and fatigue performance. Three FRP-concrete composite deck specimens with the concrete wedges were manufactured, and static and fatigue tests were carried out. The results showed that the new FRP-concrete composite deck satisfied deflection and crack width limits set by the design codes. And the fatigue test showed that the composite deck was capable of two million load cycles under 50% of its static strength. Based on the results, it can be concluded that that this new system has outstanding mechanical and durability performance, and therefore, satisfactorily be used in designing FRP-concrete composite deck.

A Study on the Mechanical Properties of Gas Pressure Welded Splices of Deformed Reinforcing Bar (가스압접 이형철근의 기계적 강도 특성 연구)

  • Jeon, Juntai
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.520-526
    • /
    • 2015
  • Reinforcing bar splices are inevitable in reinforced concrete structure. In these days, there are three main types of splices used in reinforced concrete construction site - lapped splice, mechanical splice and welded splice. Low cost, practicality in construction site, less time consuming and high performance make gas pressure welding become a favorable splice method. However, reinforcing bar splice experiences thermal loading history during the welding procedure. This may lead to the presence of residual stress in the vicinity of the splice which affects the fatigue life of the reinforcing bar. Therefore, residual stress analysis and tensile test of the gas pressure welded splice are carried out in order to verify the load bearing capacity of the gas pressure welded splice. The reinforcing bar used in this work is SD400, which is manufactured in accordance with KS D 3504. The results show that the residual stresses in welded splice is relatively small, thus not affecting the performance of the reinforcing bar. Moreover, the strength of the gas pressure welded splice is high enough for the development of yielding in the bar. As such, the reinforcing bar with gas pressure welded splice has enough capacity to behave as continuous bar.