• Title/Summary/Keyword: Mechanical Integrity

Search Result 810, Processing Time 0.024 seconds

Analysis of Overlay Weld Effect on Preventing PWSCC in Dissimilar Metal Weld (이종금속 용접부의 일차수응력부식균열 방지를 위한 예방정비 용접 효과 분석)

  • Lee, Seung-Gun;Oh, Chang-Kyun;Park, Heung-Bae;Jin, Tae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.97-101
    • /
    • 2010
  • PWSCC(Primary Stress Corrosion Cracking) in Alloy 82/182 butt welds is the problem affecting safety and integrity of nuclear power plant. PWSCC can be occurred in the area that is at high magnitude of tensile residual stress, such as Alloy 82/182 dissimilar metal welds in PZR(pressurizer) nozzles. There have been a number of incidents recently at the dissimilar metal welds in overseas nuclear power plants. Overlay weld is the one of the effective methods to decrease tensile residual stress of inside surface, which will result in preventing PWSCC. In this paper, overlay weld conditions on the purpose of preventing PWSCC was explained and the benefit of the overlay weld was confirmed performing finite element analysis.

A Study to Solve the Discontinuity of Network RTK Correction for Vehicle (이동형 항체를 위한 Network RTK 보정정보 불연속 해소 방안)

  • Park, Byung-Woon;Song, June-Sol;Kee, Chang-Don
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.78-79
    • /
    • 2012
  • To improve moving vehicles' accuracy, one-way Network RTK which guarantees high accuracy and integrity regardless the distance from rovers to Reference Station(RS) is being considered. Correction of one-way Network RTK can be generated only after constructing RS network surrounding the rover, therefore a correction discontinuity is inevitably occurred when the RS set has been changed. The discontinuity is not eliminated by the DD(Double Difference) method, and our simulation shows that it causes 13cm(horizontal) and 48cm(vertical) position error. We suggest three solutions to reduce this discontinuity, which are identification of master RS with neighbor networks, duplication of communication module to receive corrections from other network, and ambiguity levelling between neighbor networks.

  • PDF

Pseudolite-based Wide Area Differential GPS (WA-DGPS) Development and Primary Results (의사위성 기반 광역보정시스템(WA-DGPS) 구축 기술개발 및 성과)

  • Park, Hwang-Hun;Jo, Hak-Hyeon;Yun, Ho;Kee, Changdon
    • Journal of Navigation and Port Research
    • /
    • v.37 no.3
    • /
    • pp.263-267
    • /
    • 2013
  • This paper describes the progress and the plan of 'Wide Area Differential GPS (WA-DGPS) Development' project supported by Korean Ministry of Oceans and Fisheries. The project develops the main algorithms of the WA-DGPS which guarantees the improved accuracy, availability, and integrity all over the Korean peninsula. After the establishment of WA-DGPS ground infrastructure system, a real-time demonstration using pseudolite installed on the ground will be conducted in the final year. Also, the development of Korean Satellite-based Augmentation System (SBAS) is expected to be started from 2014, and the algorithms and the results in the WA-DGPS project will be used in the SBAS development.

Optimum Configuration of Gutters for Glasshouses Using ANSYS and ADAMS (ANSYS/ADAMS를 이용한 유리온실 최적의 Gutter 형태 설계)

  • Kim, Jin-Soo;Ouk, Sokunthearith;Lim, Su-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • A gutter is generally a fixed beneath the edge of a roof to carry off rainwater, or a narrow trough that collects rainwater from the roof of a building to diverts it from the structure, typically into a drain. Reasonable designs reduce the mass of the gutters (~ 16.9%), make it faster and easier to assemble, and gives it consistent strength and integrity (about 10%). New gutter systems are presented according to the results of structural analyses performed by ANSYS and ADAMS/Durability Hot Spots. In addition, the CATIA program can improve the precision of the 3D system simulations. The design of a gutter system installations also needs to comply with the specific rainfall intensities and adequate overflow provisions needs to be provided to prevent water from sides of the roofs during heavy rainfall periods. The principle outcome of this work is a computational design tool that can be used to improve the gutter performance considering a variety of factors (gutter geometry, drainage and rainfall intensity). A good gutter design must satisfy many criteria, including durability, low cost, and ease of repair and cleaning.

A Study on Temperature Rising near Fatigue Crack Tip at Cryogenic Temperature (극저온 환경에서의 피로균열 선단의 온도상승에 관한 연구)

  • ;Maekawa, I.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 1995
  • The structural materials for cryogenic technology have been recently developed to support the many modern large-scale application from superconducting magnets for nuclear fusion reactor, magnetic levitation railway to LNG tankers. However it is pointed out that quenching phenomenon is one of the serious problems for the integrity of these applications, which is mainly attributed to the rapid temperature rising in the material due to some extrinsic factors of structures. From the viewpoint of fracture mechanics, it is therefore very important to clarify the mechanism of temperature rising of structural material due to cyclic loading at cryogenic temperature. From this purpose, fatigue test was carried out for high manganese steel at liquid helium temperature(4.2K) using triangular stress waveform to identify both the mechanism of temperature rising near crack tip and the effect of loading stress waveform on temperature rising near crack tip and the effect of loading stress waveforms on temperature rising. As the results, two types of temperature rising, that is, regular and burst types were observed. And a periodical temperature rising corresponding to the stress waveforms was also found. The peaks of the temperature rising were recorded near both the maximum and the minimum values of the applied stress. The sudden temperature rises, which indicated the higher values than those of periodical temperature rises under the repetition of stress, were observed at the final region of crack growth. It was shown that the peak values of the temperature rising increased with stress intensity factor range.

High-Temperature Structural Analysis Model of the Process Heat Exchanger for Helium Gas Loop (II) (헬륨가스루프 시험용 공정열교환기에 대한 고온구조해석 모델링(II))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Seong-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.10
    • /
    • pp.1455-1462
    • /
    • 2010
  • PHE (Process Heat Exchanger) is a key component required to transfer heat energy of $950^{\circ}C$ generated in a VHTR (Very High Temperature Reactor) to the chemical reaction that yields a large quantity of hydrogen. Korea Atomic Energy Research Institute established the helium gas loop for the performance test of components, which are used in the VHTR, and they manufactured a PHE prototype to be tested in the loop. In this study, as part of the hightemperature structural-integrity evaluation of the PHE prototype, which is scheduled to be tested in the helium gas loop, we carried out high-temperature structural-analysis modeling, thermal analysis, and thermal expansion analysis of the PHE prototype. The results obtained in this study will be used to design the performance test setup for the PHE prototype.

A Study on Applicability of SP Creep Testing for Measurement of Creep Properties of Zr-2.5Nb Alloy (Zr-2.5Nb 합금의 크리프 물성 측정을 위한 SP 크리프 시험의 적용성에 대한 연구)

  • Park, Tae-Gyu;Ma, Young-Wha;Jeong, Ill-Seok;Yoon, Kee-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.1
    • /
    • pp.94-101
    • /
    • 2003
  • The pressure tubes made of cold-worked Zr-2.5Nb alloy are subjected to creep deformation during service period resulting in changes to their geometry such as longitudinal elongation, diameter increase and sagging. To evaluate integrity of them, information on the material creep property of the serviced tubes is essential. As one of the methods with which the creep property is directly measured from the serviced components, small punch(SP) creep testing has been considered as a substitute for the conventional uniaxial creep testing. In this study, applicability of the SP creep testing to Zr-2.5Nb pressure tube alloy was studied particularly by measuring the power law creep constants, A, n. The SP creep test has been successfully applied fur other high temperature materials which have isotropic behavior. Since the Zr-2.5Nb alloy has anisotropic property, applicability of the SP creep testing can be limited. Uniaxial creep tests and small punch creep tests were conducted with Zr-2.5Nb pressure tube alloy along with finite element analyses. Creep constants obtained by each test method are compared. It was argued that the SP creep test result gave results reflecting material properties of both directions. But the equations derived in the previous study for isotropic materials need to be modified. Discussions were made fur future research directions for application of the SP creep testing to Zr-2.5Nb tube alloy.

The Effect of Hydrogen on Mechanical Properties of Gas Pipeline Material: I Tensile property (가스배관 재료의 기계적특성에 미치는 수소의 영향: I 인장특성)

  • Kim, Woo-Sik;Jang, Jae-Il
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.3
    • /
    • pp.67-73
    • /
    • 2011
  • One of the important topics to prepare the up-coming era of so-called ‘hydrogen economy’ is hydrogen transmission. Pipeline is conceivably the most economic way to consistently and safely transport a large amount of hydrogen over a long distance, which may be strongly requested in hydrogen economy era. As a good starting point for the purpose, one might wonder whether conventional API pipeline steels as designed for natural gas transmission can be used as the hydrogen pipeline materials or not. To answer the question, here we performed a series of micro-/nano-indentations together with tensile tests on the hydrogen-charged API X65, X70 and X100 steels having different strength level. In this paper, from the results of tensile tests, the hydrogen effects on the mechanical behavior in the API steels are systematically evaluated.

A Development of the Lightweight Wearable Robot with Carbon Fiber Composite (탄소섬유 복합재를 이용한 경량 착용형 로봇의 개발)

  • Lee, Jeayoul;Jeon, Kwangwoo;Choi, Jeayeon;Chung, Goobong;Suh, Jinho;Choi, Ilseob;Shin, Kwangbok
    • Composites Research
    • /
    • v.28 no.3
    • /
    • pp.81-88
    • /
    • 2015
  • In this paper, we evaluate structural integrity of the wearable robot by using finite element analysis, which is made of CFRP(Carbon Fiber Reinforced Plastic) composite materials to be lightened. On the basis of the ASTM(American Standard Test Method), mechanical tests of the material are carried out in tensile, compressive and shear test for analytical evaluation. With the tested composite material, the main frame and two femoral frames of the robot is redesigned to satisfy the lightening design requirements. It is verified with the structural analysis that the redesigned frames are good for the part of the wearable robot.

Round Robin Analysis for Probabilistic Structural Integrity of Reactor Pressure Vessel under Pressurized Thermal Shock

  • Jhung Myung Jo;Jang Changheui;Kim Seok Hun;Choi Young Hwan;Kim Hho Jung;Jung Sunggyu;Kim Jong Min;Sohn Gap Heon;Jin Tae Eun;Choi Taek Sang;Kim Ji Ho;Kim Jong Wook;Park Keun Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.634-648
    • /
    • 2005
  • Performed here is a comparative assessment study for the probabilistic fracture mechanics approach of the pressurized thermal shock of the reactor pressure vessel. A round robin consisting of one prerequisite deterministic study and five cases for probabilistic approaches is proposed, and all organizations interested are invited. The problems are solved by the participants and their results are compared to issue some recommendation of best practices and to assure an understanding of the key parameters in this type of approach, like transient description and frequency, material properties, defect type and distribution, fracture mechanics methodology etc., which will be useful in the justification through a probabilistic approach for the case of a plant over-passing the screening criteria. Six participants from 3 organizations responded to the problem and their results are compiled and analyzed in this study.