• Title/Summary/Keyword: Mechanical Flight Control System

Search Result 118, Processing Time 0.03 seconds

Active Vibration Control of a Cylindrical Rod Transmitting Axial Load (축 방향 하중 전달 부재의 진동제어)

  • Choe, Seung-Ju;Park, Hyeon-Cheol;Hwang, Un-Bong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1950-1959
    • /
    • 2001
  • An active control of the vibration transmitted by longitudinal load in flight control system is investigated numerically. The flight control system is modeled as a finite, thin shell cylinder with constant thickness. A vibration source is generated by exterior monopole source. Distributed piezoelectric actuator is used to control of the vibration. Thin shell theory is used to formulate the numerical models. The amplitude of vibration at discrete location and power transmission are minimized by analytical optimization method. Genetic algorithm is used as numerical optimization method to search optimal actuator position and size which amplitude of vibration is minimized.

Design and testing of the KC-100 Spin Recovery Parachute System (SRPS)

  • Lee, Dong-Hun;Nho, Byung-Chan;Kang, Myung-Kag;Kang, Kyung-Woo;Lee, Ju-Ha;Kim, Su-Min;Kwon, Young-Suk
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.117-125
    • /
    • 2012
  • This paper presented the design of SRPS, ground function test, and the deployment test on a high speed taxi of KC-100 airplane. KAI has developed a spin recovery system in collaboration with Airborne Systems for KC-100 general aviation airplane. Spin mode analysis, rotary balance and forced oscillation tests were performed to obtain the rotational, dynamic derivatives in the preliminary design phase. Prior to the detailed design process of SRPS, approximations for initial estimation of design parameters- fineness ratio, parachute porosity, parachute canopy filling time, and deployment method- were considered. They were done based on the analytical disciplines such as aerodynamics, structures, and stability & control. SRPS consists of parachute, tractor rocket assembly for deployment, attach release mechanism (ARM) and cockpit control system. Before the installation of SRPS in KC-100 airplane, all the control functions of this system were demonstrated by using SBTB(System Breakout Test Box) in the laboratory. SBTB was used to confirm if it can detect faults, and simulate the firing of pyrotechnic devices that control the deployment and jettison of SRPS. Once confirmed normal operation of SRPS, deployment and jettison of parachute on the high speed taxiing were performed.

Design of CCV adaptive flight control system under microburst type disturbances

  • Uchikado, Shigeru;Kanai, Kimio;Osa, Yasuhiro;Tanaka, Kanya
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.271-276
    • /
    • 1994
  • In this paper we deal with a design of CCV adaptive flight control system having adaptive observer under the mircroburst circumstances. First, based on the observerbility indices of the controlled system, which is a general multi-variable one, the adaptive observer is constructed, and the unknown interactor matrix can be estimated by using the identified parameters. Next, CCV adaptive flight control law is calculated based upon the estimated ones. Finally, the proposed CCV adaptive flight controller is applied to STOL flying boat and numerical simulations under the microburst circumstances can be show to justify the proposed scheme.

  • PDF

Synthesis of a flight control system via nonlinear model matching theory

  • Uchikado, Shigeru;Kobayashi, Nobuaki;Osa, Yasuhiro;Kanai, Kimio;Nakamizo, Takayoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.659-664
    • /
    • 1994
  • In this paper we deal with a synthesis of flight control system via nonlinear model matching theory. First, the longitudinal and lateral-directional equations of aircraft motion an CCV mode are considered except the assumption "variations on steady straight flight due to disturbances are very small". Next, a design method of the dynamic model matching control system based on Hirschorn's Algorithm is proposed to the above nonlinear system. Finally, the proposed control system is applied to the small sized, high speed aircraft, T-2 on CCV mode and numerical simulations are shown to justify the proposed scheme.ed scheme.

  • PDF

Research on the Design and Evaluation of a Control Loading System for Flight Simulator (비행 시뮬레이터용 조종력 재현 장치 설계 및 시험연구)

  • Lee, Chan-Seok;Kim, Byoung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.95-100
    • /
    • 2004
  • This paper represents the development of a CLS(Control Loading System) for a target a airplane (KT-1) with mechanical linkage reversible flight control system. The system is composed of mechanical frame, controller, sensing part to measure the force from the stick, driving system generating the reaction forces. The DS1103 DSP(Digital Signal Processor) of the dSpace Corp. was used as the controller. The control algorithm of the CLS and the operational environment including monitoring software and evaluation tools are described. The evaluation of the system was conducted according to the requirement specification. The results of the test were analyzed by comparing with the actual data of the target airplane.

On the development of the Anuloid, a disk-shaped VTOL aircraft for urban areas

  • Petrolo, Marco;Carrera, Erasmo;D'Ottavio, Michele;de Visser, Coen;Patek, Zdenek;Janda, Zdenek
    • Advances in aircraft and spacecraft science
    • /
    • v.1 no.3
    • /
    • pp.353-378
    • /
    • 2014
  • This paper deals with the early development of the Anuloid, an innovative disk-shaped VTOL aircraft. The Anuloid concept is based on the following three main features: the use of a ducted fan powered by a turboshaft for the lift production to take-off and fly; the Coanda effect that is developed through the circular internal duct and the bottom portion of the aircraft to provide further lift and control capabilities; the adoption of a system of ducted fixed and swiveling radial and circumferential vanes for the anti-torque mechanism and the flight control. The early studies have been focused on the CFD analysis of the Coanda effect and of the control vanes; the flyability analysis of the aircraft in terms of static performances and static and dynamic stability; the preliminary structural design of the aircraft. The results show that the Coanda effect is stable in most of the flight phases, vertical flight has satisfactory flyability qualities, whereas horizontal flight shows dynamic instability, requiring the development of an automatic control system.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (3) - Flight Test Results and Analysis of Solar Powered UAV - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (3) - 태양광 무인기 비행실험 결과 및 분석 -)

  • Kim, Doyoung;Kim, Taerim;Jeong, Jaebaek;Park, Sanghyuk;Bae, Jae-Sung;Moon, Seokmin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.489-496
    • /
    • 2022
  • This paper introduces the system for KAU-SPUAV, which is designed and developed by Korea Aerospace University, and verifies its performance through flight test. Specification of two versions of KAU-SPUAV, avionics system, and Ground Control System (GCS) are introduced. Three missions are performed with suggested UAVs: LTE signal mapping, circumnavigation of Jeju island seashore, and long endurance flight. Each mission consists of long distance and long endurance flight which takes advantage of KAU-SPUAV. Research team of KAU-SPUAV confirmed its versatility through suggested flight data. Also based on flight results, the team found the potential of performance improvement of KAU-SPUAV.

BITSE Instrument

  • Choi, Seonghwan;Park, Jongyeob;Yang, Heesu;Baek, Ji-Hye;Kim, Jihun;Kim, Jinhyun;Kim, Yeon-Han;Cho, Kyung-Suk;Newmark, Jeffrey S.;Gong, Qian;Nguyen, Hanson;Chang, William S.;Swinski, Joseph-Paul A.;Gopalswamy, Natchumuthuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.57.2-57.2
    • /
    • 2019
  • BITSE is a balloon mission, which is a solar coronagraph to measure speed and temperature of the solar wind using 4 different wavelength filters and an pixelated polarization camera. KASI and NASA jointly designed, developed, and tested the solar coronagraph. Mainly KASI developed an imaging system and a control system, and NASA developed an optical system and mechanical structures. We mount the BITSE on Wallops Arc-Second Pointer (WASP) of Wallops Flight Facility, and launch it with a 39 mcf balloon of Columbia Scientific Ballon Facility. We will introduce the overall system of the BITSE.

  • PDF

Real-Time Flight Testing for Developing an Autonomous Indoor Navigation System for a Multi-Rotor Flying Vehicle (실내 자율비행 멀티로터 비행체를 위한 실시간 비행시험 연구)

  • Kim, Hyeon;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.343-352
    • /
    • 2016
  • A multi-rotor vehicle is an unmanned vehicle consisting of multiple rotors. A multi-rotor vehicle can be categorized as tri-, quad-, hexa-, and octo-rotor depending on the number of the rotors. Multi-rotor vehicles have many advantages due to their agile flight capabilities such as the ability for vertical take-off, landing and hovering. Thus, they can be widely used for various applications including surveillance and monitoring in urban areas. Since multi-rotors are subject to uncertain environments and disturbances, it is required to implement robust attitude stabilization and flight control techniques to compensate for this uncertainty. In this research, an advanced nonlinear control algorithm, i.e. sliding mode control, was implemented. Flight experiments were carried out using an onboard flight control computer and various real-time autonomous attitude adjustments. The feasibility and robustness for flying in uncertain environments were also verified through real-time tests based on disturbances to the multi-rotor vehicle.

A Study on Hovering Flight Control for a Model Helicopter (모형 헬리콥터 정지비행제어에 관한 연구)

  • 심현철;이은호;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1399-1411
    • /
    • 1994
  • A model helicopter has more versatile flight capability than the fixed-wing aircraft and it can be used as an unmaned vehicle in hazardous area. A helicopter, similar to other aircrafts, is an unstable, multi-input multi-output nonlinear system exposed to strong disturbance. So it should be controlled by robust control theories that can be applied to multivariable systems. In this study, motion equations of hovering are established, linearized and transformed into a state equation form. Various parameters are measured and calculated in other to obtain the stability derivatives in the state equation. Hovering flight controller is designed using the digital LQG/LTR(Linear Quadratic Gaussian/Loop Transfer Recovery) control theory. The designed controller is tested by the nonlinear simulations and implemented on an IBM-PC/386. Experiments were carried out on a model helicopter attached to the 3-DOF gimbal. The designed controller showed satisfactory hovering capability to maintain the hovering for more than 40 seconds.