• 제목/요약/키워드: Mechanical Fatigue

검색결과 2,382건 처리시간 0.031초

경계조건과 두께 변화에 따른 사각탱크의 진동 특성 (Vibration Characteristics of A Rectangular Tank in accordance with Changing Thickness And Boundary Condition)

  • 배성용
    • 동력기계공학회지
    • /
    • 제15권1호
    • /
    • pp.24-31
    • /
    • 2011
  • Rectangular box type structures are used in many fields of civil, mechanical and marine engineering. Especially, Most ship structures are often in contact with inner or outer fluid, like ballast, fuel and stem tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of rectangular tanks containing fluid. Few research on dynamic interaction among tank walls filled with fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass of water have to be considered. In the previous report, a numerical analysis is performed for the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing breadth of the plates by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing length, thickness, and boundary condition of the plates are investigated numerically and discussed.

잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석 (Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength)

  • 강충길;서영호
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF

이종재료 마찰용접에 의한 초내열합금 대형 배기밸브 스핀들 개발 (Development of Large Superalloy Exhaust Valve Spindle by Dissimilar Inertia Welding Process)

  • 박희천;정호승;조종래;이낙규;오중석;한명섭
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.891-898
    • /
    • 2005
  • Inertia welding is a solid-state welding process in which butt welds in materials are made in bar and in ring form at the joint race, and energy required lot welding is obtained from a rotating flywheel. The stored energy is converted to frictional heat at the interface under axial load. The quality of the welded joint depends on many parameters, including axial force, initial revolution speed and energy amount of upset. working time, and residual stresses in the joint. Inertia welding was conducted to make the large exhaust valve spindle for low speed marine diesel engine. superalloy Nimonic 80A for valve head of 540mm and high alloy SNCrW for valve stem of 115mm. Due to different material characteristics such as, thermal conductivity and flow stress. on the two sides of the weld interface, modeling is crucial in determining the optimal weld geometry and Parameters. FE simulation was performed by the commercial code DEFORM-2D. A good agreement between the Predicted and actual welded shape is observed. It is expected that modeling will significantly reduce the number of experimental trials needed to determine the weld parameters. especially for welds for which are very expensive materials or large shaft. Many kinds of tests, including macro and microstructure observation, chemical composition tensile , hardness and fatigue test , are conducted to evaluate the qualify of welded joints. Based on the results of the tests it can be concluded that the inertia welding joints of the superalloy exhaust valve spindle are better properties than the material specification of SNCrW.

레이저 여기 램파를 이용한 항공기 판재 접합부의 비접촉식 초음파 검사 (Non-Contact Ultrasonic Testing of Aircraft Joints using Laser Generated Lamb Wave)

  • 장경영;김홍준
    • 비파괴검사학회지
    • /
    • 제21권2호
    • /
    • pp.163-168
    • /
    • 2001
  • 접착제와 리벳으로 접합된 항공기 판재의 접합부는 접합 불량, 크랙, 피로 결함이나 부식등에 의해 손상되고 열화될 수 있으며 이런 결함을 전 영역에 걸쳐서 신속하고도 신뢰성 있게 검사하는 것은 항공기 안전을 위해 매우 중요하다. 본 연구에서는 이를 위해 항공기용 알루미늄 판재의 랩 스플라이스 접합 연결부의 접합 품질을 비접촉 방식으로 수행할 수 있는 초음파 비파괴 평가법을 제안한다. 여기서는 레이저를 이용해 램파를 발생시키고 비접촉식 트랜스듀서 (공기정합 용량형 트랜스듀서)를 이용해 피치-캐치 방식으로 검사한다. 레이저 소스로는 Q-스위치된 Nd:YAG 레이저가 이용되며 배열 형태의 직선 슬릿을 갖는 마스크를 이용해 특정 모드의 램파를 발생시켜 이용하였다. 접합부의 한 쪽에서 발생된 레이저 여기 초음파는 판을 따라 전파하여 접합부를 지나 반대편에서 수신되고 수신된 신호의 특성과 접합부의 품질과의 관련성을 조사하였다.

  • PDF

Carbon-Nanofiber Reinforced Cu Composites Prepared by Powder Metallurgy

  • Weidmueller, H.;Weissgaerber, T.;Hutsch, T.;Huenert, R.;Schmitt, T.;Mauthner, K.;Schulz-Harder, S.
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.321-326
    • /
    • 2006
  • Electronic packaging involves interconnecting, powering, protecting, and cooling of semiconductor circuits fur the use in a variety of microelectronic applications. For microelectronic circuits, the main type of failure is thermal fatigue, owing to the different thermal expansion coefficients of semiconductor chips and packaging materials. Therefore, the search for matched coefficients of thermal expansion (CTE) of packaging materials in combination with a high thermal conductivity is the main task for developments of heat sink materials electronics, and good mechanical properties are also required. The aim of this work is to develop copper matrix composites reinforced with carbon nanofibers. The advantages of carbon nanofibers, especially the good thermal conductivity, are utlized to obtain a composite material having a thermal conductivity higher than 400 W/mK. The main challenge is to obtain a homogeneous dispersion of carbon nanofibers in copper. In this paper, a technology for obtaining a homogeneous mixture of copper and nanofibers will be presented and the microstructure and properties of consolidated samples will be discussed. In order to improve the bonding strength between copper and nanofibers, different alloying elements were added. The microstructure and the properties will be presented and the influence of interface modification will be discussed.

Ti-6Al-4V 합금의 미세조직 및 크리프 특성에 미치는 플라즈마 침탄 처리의 영향 (Improvement of Microstructure and Creep Properties of Ti-6Al-4V alloy by Plasma Carburization)

  • 박용권;위명용;박정웅
    • 열처리공학회지
    • /
    • 제17권2호
    • /
    • pp.94-100
    • /
    • 2004
  • In order to improve the wear resistance of Ti-6Al-4V alloy, plasma carburization treatment was newly carried out without consumption of its good specific strength and fatigue life over the temperature. Effect of the plasma carburization was analyzed and compared with the non-treated alloy by microstructural observation, structure characterization and mechanical test. The plasma treated alloy formed a carburized layer of about $150{\mu}m$ in depth from the surface, where a fine and hard particles of TiC and $V_4C_3$ were homogeneously dispersed through the layer. The steady-static creep behaviors of Ti-6Al-4V alloy, using the constant stress creep tester, were investigated over the temperature range of $510{\sim}550^{\circ}C$(0.42~0.44Tm) and the stress range of 200~275 MPa. Stress exponent(n) was decreased from 9.32 of non-treatment specimen to 8.95 of carburized, however, the activation energy(Q) increased from 238 to 250 kJ/mol with the same condition as indicated above. From the above results, it can be concluded that the static creep deformation for Ti-6Al-4V alloy was controlled by the dislocation climb over the ranges of the experimental conditions.

Dynamic numerical simulation of plastic deformation and residual stress in shot peening of aluminium alloy

  • Ullah, Himayat;Ullah, Baseer;Muhammad, Riaz
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.1-9
    • /
    • 2017
  • Shot peening is a cold surface treatment employed to induce residual stress field in a metallic component beneficial for increasing its fatigue strength. The experimental investigation of parameters involved in shot peening process is very complex as well as costly. The most attractive alternative is the explicit dynamics finite element (FE) analysis capable of determining the shot peening process parameters subject to the selection of a proper material's constitutive model and numerical technique. In this study, Ansys / LS-Dyna software was used to simulate the impact of steel shots of various sizes on an aluminium alloy plate described with strain rate dependent elasto-plastic material model. The impacts were carried out at various incident velocities. The influence of shot velocity and size on the plastic deformation, compressive residual stress and force-time response were investigated. The results exhibited that increasing the shot velocity and size resulted in an increase in plastic deformation of the aluminium target. However, a little effect of the shot velocity and size was observed on the magnitude of target's subsurface compressive residual stress. The obtained results were close to the published ones, and the numerical models demonstrated the capability of the method to capture the pattern of residual stress and plastic deformation observed experimentally in aluminium alloys. The study can be quite helpful in determining and selecting the optimal shot peening parameters to achieve specific level of plastic deformation and compressive residual stress in the aluminium alloy parts especially compressor blades.

차도용 칼라 역청 혼합물의 적용성 연구 (Applicability of Color Bituminous Mixtures for Highway Pavement)

  • 도영수;오성균;최영규;김광우
    • 한국도로학회논문집
    • /
    • 제6권4호
    • /
    • pp.91-100
    • /
    • 2004
  • 본 연구는 차도용 칼라 역청 콘크리트의 적용성을 평가하기 위하여 수행되었다. 칼라 역청 포장은 차도가 아닌 보행자 도로나 자전거 도로에 사용되어 왔다 본 연구에서 바인더 개질 및 혼합물 강성의 증진을 위하여 두 가지폴리머가 사용되었다. 또한 갭입도 혼합물에서 나타나는 침강현상을 방지하기 위하여 폐신문지를 사용하였다 마샬안정도, 간접인장강도, 동결-융해 및 인공노화 처리 전 후의 인장강도비, 소성변형 저항성, 피로수명을 측정하였다. LDPE 개질된 칼라 역청 콘크리트는 일반 아스팔트 혼합물에 비해 높은 안정도와 인장강도를 나타냈으며, 특히 소성변형 저항성에서 많은 향상을 가져왔다. Rosin 개질된 칼라 역청 콘크리트는 일반 아스팔트 혼합물보다 높은 안정도와 동결융해저항성을 보였으며, 특히 간접인장강도에서 많은 향상을 보였다. LDPE +Rosin의 개질은 거의 대부분의 역학적 특성의 증가를 가져왔다. 따라서 본 연구에서 사용된 칼라 역청 콘크리트 혼합물은 기존 AP-3를 사용한 아스팔트 콘크리트 혼합물과 비교해 역학적 특성이 비슷하였으며, 모든 혼합물은 차도용 시방 규정을 만족하였다. 그리고, 이를 LDPE와 Rosin으로 개질할 경우 포장의 공용성능이 더욱 향상될 것으로 보여 차도용으로 충분히 사용 가능함을 확인하였다.

  • PDF

자동차 운전자 졸림 감지 기술 (Car Driver Drowsiness Detection Technology)

  • 정완영;김종진;권태하
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2011년도 춘계학술대회
    • /
    • pp.481-484
    • /
    • 2011
  • 최근의 자동차 기술이 기계적 장치 위주에서 전장부품 특히, 차량의 안전 및 편의 기술로서 발전되고 있어서, 추후 자동차의 경쟁력은 에너지 효율성문제와 안전편의 기술의 적용에 의해 그 경쟁력이 결정될 것으로 판단된다. 본 연구에서는 자동차 운전자 졸림의 검지하기 위한 각종 기술을 소개하고 상용화된 기술의 장단점을 비교하여서, 이의 문제점을 해결하기 위한 복합 센싱기술을 소개한다. 기존의 카메라에 의한 눈동자인식을 기반으로한 직접적인 졸림검지와 운전자의 생체신호를 검출하여 간접적으로 스트레스, 피로도, 졸림을 검출하는 방법을 결합하여, 보다 정확도가 높은 졸림검지가 가능한 알고리즘을 개발하였다.

  • PDF

Simulations of fluidelastic forces and fretting wear in U-bend tube bundles of steam generators: Effect of tube-support conditions

  • Hassan, Marwan;Mohany, Atef
    • Wind and Structures
    • /
    • 제23권2호
    • /
    • pp.157-169
    • /
    • 2016
  • The structural integrity of tube bundles represents a major concern when dealing with high risk industries, such as nuclear steam generators, where the rupture of a tube or tubes will lead to the undesired mixing of the primary and secondary fluids. Flow-induced vibration is one of the major concerns that could compromise the structural integrity. The vibration is caused by fluid flow excitation. While there are several excitation mechanisms that could contribute to these vibrations, fluidelastic instability is generally regarded as the most severe. When this mechanism prevails, it could cause serious damage to tube arrays in a very short period of time. The tubes are therefore stiffened by means of supports to avoid these vibrations. To accommodate the thermal expansion of the tube, as well as to facilitate the installation of these tube bundles, clearances are allowed between the tubes and their supports. Progressive tube wear and chemical cleaning gradually increases the clearances between the tubes and their supports, which can lead to more frequent and severe tube/support impact and rubbing. These increased impacts can lead to tube damage due to fatigue and/or wear at the support locations. This paper presents simulations of a loosely supported multi-span U-bend tube subjected to turbulence and fluidelastic instability forces. The mathematical model for the loosely-supported tubes and the fluidelastic instability model is presented. The model is then utilized to simulate the nonlinear response of a U-bend tube with flat bar supports subjected to cross-flow. The effect of the support clearance as well as the support offset are investigated. Special attention is given to the tube/support interaction parameters that affect wear, such as impact and normal work rate.