• Title/Summary/Keyword: Mechanical Clearance

검색결과 389건 처리시간 0.028초

비대칭 Groove를 이용한 FDB 회전축의 기울기 보상 (Compensation of Inclined Rotating Axis Using Unsymmetric Groove Patterns)

  • 이남훈;한재혁;오동호;김철순;변용규;구자춘
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.582-585
    • /
    • 2004
  • Most of hard disk drives currently employ fluid dynamic bearing (FDB) for their rotor support. Stiffness of the FDB is affected by many design factors such as bearing clearance, fluid viscosity, and rotational speed. For the high rotating speed HDDs stiffness of the rotor is normally high enough to accomodate load disturbances. However small form factor HDDs that are to be operated in low power consumption are often designed with low stiffness rotors. Although the low stiffness rotor clearly benefits low power operation, it could damage the entire motor structure or head disk interface even by a light mechanical load disturbance such as shock or vibration. In addition, since a single channel HDD does not provide gram load equilibrium in axial direction the rotor could be tilted and make a hard contact to stator. A non-symmetric groove pattern could successfully compensate the tilted rotor angle during operation.

  • PDF

리튬 이온전지용 알루미늄 박판의 블랭킹 공정에 관한 연구 (Blanking Process of Aluminum Thin Sheet for Lithium Ion Battery)

  • 김민기;김재홍;신현집;문지희;고대철
    • 소성∙가공
    • /
    • 제30권4호
    • /
    • pp.179-185
    • /
    • 2021
  • Lithium ion batteries are generally manufactured by laser and etching using aluminum thin sheet. These processes are relatively expensive and have low productivity. In this study, blanking process of aluminum thin sheet for lithium ion battery was employed to replace laser cutting and etching process, all to reduce the production cost and improve productivity. Mechanical properties for aluminum and coating were determined by experimental results and rule of mixture for FE analysis of blanking process. Normalized Cockcroft-Latham criteria was also applied to describe shear behavior and critical damage values were determined by comparison of analytical and experimental result. We performed FE analysis to investigate the effects of clearance and punch-die radius on sheared surface of aluminum thin sheet and to determine optimal process condition. We manufactured the die set using the determined optimal process and conducted an experiment to confirm the feasibility of blanking process. The sheared surface of manufactured product was observed by optical microscope. As a results, the proposed process conditions successfully achieved the dimensional requirement in production of lithium ion battery parts.

스러스트 래버린스 실을 배면에 갖는 원심형 임펠러의 축력 해석 (Analysis of the Axial Thrust Force of a Centrifugal Impeller with a Thrust Labyrinth Seal at its Backside)

  • 박준혁;김태호
    • Tribology and Lubricants
    • /
    • 제37권1호
    • /
    • pp.31-40
    • /
    • 2021
  • This study describes the effects of a thrust labyrinth seal applied to the backside of a centrifugal impeller on the axial thrust force for high speed turbomachinery. The bulk flow model using Neumann's equation calculates the seal cavity pressures and leakage flow rate of the thrust labyrinth seal based on three configurations: teeth-on-rotor (TOR), teeth-on-stator (TOS), and interlocking labyrinth seal (ILS). Prediction results show that the ILS is superior to the TOR and TOS in terms of leakage flow rate. A mathematical model of a centrifugal impeller with a thrust labyrinth seal on its backside calculates the force components corresponding to the impeller inlet, shroud, impeller backside outer, backside seal, and backside inner pressures. A summation of the force components renders the total axial thrust force acting on the centrifugal impeller. The Newton-Raphson numerical scheme iteratively calculates the pressures and leakage flow rate through the impeller wall gap. The prediction results reveal that the leakage flow rate and total axial thrust force increase with rotor speed, and the ILS significantly decreases the leakage flow rate, whereas it slightly increases the axial thrust force when compared to TOR and TOS. Increasing the seal clearance causes an increase in the leakage flow rate and a slight decrease in the axial thrust force with the ILS.

알루미늄 홀 가공 하중 분석을 통한 펀치 마모수준 예측에 관한 연구 (A study on the prediction of punch wear level through analysis of piercing load of aluminum)

  • 전용준
    • Design & Manufacturing
    • /
    • 제16권4호
    • /
    • pp.46-51
    • /
    • 2022
  • The piercing process of creating holes in sheet metals for mechanical fastening generates high shear force. Real-time monitoring technology could predict tool damage and product defects due to this severe condition, but there are few applications for piercing high-strength aluminum. In this study, we analyzed the load signal to predict the punch's wear level during the process with a piezoelectric sensor installed piercing tool. Experiments were conducted on Al6061 T6 with a thickness of 3.0 mm using piercing punches whose edge angle was controlled by reflecting the wear level. The piercing load increases proportionally with the level of tool wear. For example, the maximum piercing load of the wear-shaped punch with the tip angle controlled at 6 degrees increased by 14% compared to the normal-shaped punch under the typical clearance of 6.7% of the aluminum piercing tool. In addition, the tool wear level increased compression during the down-stroke, which is caused by lateral force due to the decrease in the diameter of pierced holes. Our study showed the predictability of the wear level of punches through the recognition of changes in characteristic elements of the load signal during the piercing process.

A Study on a Dual Electromagnetic Sensor System for Weld Seam Tracking of I-Butt Joints

  • Kim, J.-W.;Shin, J.-H.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.51-56
    • /
    • 2002
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement sensor and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal I-butt joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor was determined far the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 ㎜, and it was revealed that the system has excellent seam tracking ability for the I-butt joint of sheet metal.

  • PDF

치과용 유니트체어 유압구동 시스템 해석모델을 활용한 누유량 분석 (Oil Leak Analysis using Simulation Model of Hydraulic System for Dental Chair)

  • 노대경;이동원;김재용;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.35-44
    • /
    • 2023
  • This study aimed to analyze the performance of hydraulic systems for dental chair when long working hours makes the temperature of hydraulic fluid rise. The study was carried out in the following manner. First, 'cylinder's clearance' was reflected in the three kinds of hydraulic circuits, which were developed through the preceding study, in order to analyze oil leak. Second, 12 cases of simulations comprised of the up and down of cylinders were carried out. Third, it was determined whether the cylinder velocity of dental chair surpasses 1cm/s required in the development even in the hydraulic fluid temperature of 60℃. In conclusion, this study used SimulationX to verify the performance stability at high temperatures using three types of hydraulic circuits designed to develop a Korean unit chair.

Comparison of Lower Extremity Kinematics and Kinetics during Downhill and Valley-shape Combined Slope Walking

  • Jeong, Jiyoung;Shin, Choongsoo S.
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.161-166
    • /
    • 2016
  • Objective: The purpose of this study was to determine the knee and ankle joint kinematics and kinetics by comparing downhill walking with valley-shape combined slope walking. Method: Eighteen healthy men participated in this study. A three-dimensional motion capture system equipped with eight infrared cameras and a synchronized force plate, which was embedded in the sloped walkway, was used. Obtained kinematic and kinetic parameters were compared using paired two-tailed Student's t-tests at a significance level of 0.05. Results: The knee flexion angle after the mid-stance phase, the mean peak knee flexion angle in the early swing phase, and the ankle mean peak dorsiflexion angle were greater during downhill walking compared with valley-shape combined slope walking (p < 0.001). Both the mean peak vertical ground reaction force (GRF) in the early stance phase and late stance phase during downhill walking were smaller than those values during valley-shape combined slope walking. (p = 0.007 and p < 0.001, respectively). The mean peak anterior GRF, appearing right after toe-off during downhill walking, was also smaller than that of valley-shape combined slope walking (p = 0.002). The mean peak knee extension moment and ankle plantar flexion moment in late stance phase during downhill walking were significantly smaller than those of valley-shape combined slope walking (p = 0.002 and p = 0.015, respectively). Conclusion: These results suggest that gait strategy was modified during valley-shape combined slope walking when compared with continuous downhill walking in order to gain the propulsion for lifting the body up the incline for foot clearance.

표면가공무늬가 사판식 액셜 피스톤펌프의 밸브부 윤활특성에 미치는 영향에 관한 연구 (Surface Lay Effects on the Lubrication Characteristics in the Valve Part of a Swash-plate Type Axial Piston Pump)

  • 신정훈;강보식;김경웅
    • Tribology and Lubricants
    • /
    • 제28권1호
    • /
    • pp.12-18
    • /
    • 2012
  • This application study of a swash-plate type axial piston pump was concerned about the lubrication characteristics between cylinder barrel and valve plate which are the main rotating body and its opposite sliding part respectively. A computer simulation was implemented to assess bearing and sealing functions of the fluid film between cylinder barrel and valve plate. A numerical algorithm was developed to facilitate simultaneous calculations of dynamic cylinder pressure, 3 degree-of-freedom barrel motions considering inertia effect, and fluid film pressure assuming full fluid film lubrication regime. Central clearance, tilt angle, and azimuth angle of the rotating body were calculated for each time step. Surface waviness was found to be an influential factor due to the small fluid film thickness which can appear in flat land bearings. Five surface lays which can form on the lubrication surface in accordance with machining process were defined and analyzed using the simulation tool. Oil leakage flow and frictional torque in the fluid film between cylinder barrel and valve plate were also calculated to discuss in the viewpoint of energy loss. The simulation results showed that in actual sliding conditions proper surface non-flatness can make a positive effect on the energy efficiency and reliability of the thrust bearing.

아연코팅 강판의 CO2 레이저용접시 인프로세스 모니터링을 위한 측정신호와 용접결함과의 관련성 연구 (Study on the Relationship Between Emission Signals and Weld Defect for In-Process Monitoring in CO2 Laser Welding of Zn-Coated Steel)

  • 김종도;이창제
    • 대한기계학회논문집A
    • /
    • 제34권10호
    • /
    • pp.1507-1512
    • /
    • 2010
  • 본 연구에서는 조선용 6mm 아연코팅강판의 $CO_2$ 레이저 겹치기 용접시 발생하는 유기 플라즈마를 마이크로폰과 포토다이오드로 측정하였다. 이때 겹치기 갭간극에 따른 용접조건을 RMS한 신호와 비교 분석하였다. 이를 통해 아연증발량이 증가함에 따라 RMS값도 증가하였으며, 겹침부의 조건에 따라 결함 발생시 RMS의 급격한 변화도 확인할 수 있었다. 또한 용접조건에 따른 Raw signal의 FFT값을 구한 후, 이때 구해진 주파수값을 밴드폭으로 설정하여 Raw signal을 필터링한 뒤의 RMS값을 용접비드와 대응하여 필터링하지 않은 RMS와의 차이점도 비교 분석하였다. 이를 통해 기존의 방법들보다 신뢰성 높은 In-process 모니터링이 가능함을 확인하였다.

DLP용 유체동압베어링 스핀들모터 (Fluid Dynamic Bearing Spindle Motors for DLP)

  • 김응철;성세진
    • 전기학회논문지P
    • /
    • 제60권2호
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.