• Title/Summary/Keyword: Mechanical Circuit Breaker

검색결과 95건 처리시간 0.017초

전극형상 변화가 진공차단기내 축방향 자기장 특성에 미치는 영향 (Effects of Electrode Configurations on the Characteristics of Axial Magnetic Fields in Vacuum Interrupter)

  • 황정훈;이종철;김윤제
    • 대한기계학회논문집A
    • /
    • 제32권1호
    • /
    • pp.7-12
    • /
    • 2008
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compacted environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the effect of changing geometrical parameters for electromagnetic behaviors of high-current vacuum arcs with two different types of AMP contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

스프링 조작기의 성능 개선을 위한 코일스프링의 최적 설계 (Optimum Design of a Coil Spring for Improving the Performance of a Spring -Operated Mechanism)

  • 이대우;손정현;유완석
    • 대한기계학회논문집A
    • /
    • 제40권3호
    • /
    • pp.275-280
    • /
    • 2016
  • 본 연구에서는 코일스프링의 동적 거동 분석을 위해 스프링 릴리즈 시험기를 설계하고 시험을 실시하였다. 시뮬레이션을 위해 집중 매개변수 스프링모델을 개발하였다. 실험계획법을 이용하여 코일스프링의 설계변수들을 최적화하였다. 2수준의 요인배치법을 사용하여 설계변수들의 민감도와 교호작용을 분석하였다. 민감도와 교호작용 분석결과를 통해 설계변수의 수준을 재배열하였다. 혼합수준 요인배치법을 이용하여 설계변수를 최적화 하였다. 최적설계 결과에 따르면, 스프링 조작기의 성능이 2.90 % 개선되었다.

진공차단부 대전류 아크 해석: (I)축방향 자기장 (Simulation of High-current Vacuum Arcs: (I)Axial Magnetic Field)

  • 황정훈;이종철;최명준;권중록;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2500-2505
    • /
    • 2007
  • The vacuum interrupter (VI) is used for medium-voltage switching circuits due to its abilities and advantages as a compact and environmental friendly circuit breaker. In general, the application of a sufficiently strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. A full understanding of the vacuum arc physics is very important since it can aid to improve the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and hydrodynamic fields, simultaneously. In this study, we have investigated the electromagnetic behaviors of high-current vacuum arcs for two different types of AMF contacts, which are coil-type and cup-type, using a commercial finite element analysis (FEA) package, ANSYS. The present results are compared with those of MAXWELL 3D, a reliable electromagnetic analysis software, for verification.

  • PDF

축방향 자기장에 의한 대전류 아크 특성에 관한 연구 (A Study on the Characteristics of High-Current Arc Plasma Influenced by Axial Magnetic Field)

  • 조성훈;이종철;최명준;권중록;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2515-2518
    • /
    • 2008
  • The vacuum interrupter (VI) is widely used in medium-voltage switching circuits due to its abilities and advantages as an environmental friendly circuit breaker. An understanding of the vacuum arc flow phenomena is very important for improving the performance of vacuum interrupter. In order to closely examine the vacuum arc phenomena, it is necessary to predict the magnetohydrodynamic (MHD) characteristics by the multidisciplinary numerical modeling, which is coupled with the electromagnetic and the thermal flow fields, simultaneously. In this study, we have investigated arc plasma constriction phenomena and an effect of AMF on the arc plasma with the high-current vacuum arcs for the cup-type AMF electrode by using a commercial finite element analysis (FEA) package, ANSYS. The simulation results applied with various AMFs and constant Joule heat generation show that strong axial magnetic field (AMF) permits the arc to be maintained in a diffused mode to a high-current vacuum arc. However, further studies are required on the two-way coupling method and radiation model for arc plasma in order to accomplish the advanced analysis method.

  • PDF

A 3-D Steady-State Analysis of Thermal Behavior in EHV GIS Busbar

  • Lei, Jin;Zhong, Jian-ying;Wu, Shi-jin;Wang, Zhen;Guo, Yu-jing;Qin, Xin-yan
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권3호
    • /
    • pp.781-789
    • /
    • 2016
  • Busbar has been used as electric conductor within extra high voltage (EHV) gas insulated switchgear (GIS), which makes EHV GIS higher security, smaller size and lower cost. However, the main fault of GIS is overheating of busbar connection parts, circuit breaker and isolating switch contact parts, which has been already restricting development of GIS to a large extent. In this study, a coupled magneto-flow-thermal analysis is used to investigate the thermal properties of GIS busbar in steady-state. A three-dimensional (3-D) finite element model (FEM) is built to calculate multiphysics fields including electromagnetic field, flow field and thermal field in steady-state. The influences of current on the magnetic flux density, flow velocity and heat distribution has been investigated. Temperature differences of inner wall and outer wall are investigated for busbar tank and conducting rod. Considering the end effect in the busbar, temperature rise difference is compared between end sections and the middle section. In order to obtain better heat dissipation effect, diameters of conductor and tank are optimized based on temperature rise simulation results. Temperature rise tests have been done to validate the 3-D simulation model, which is observed a good correlation with the simulation results. This study provides technical support for optimized structure of the EHV GIS busbar.