• Title/Summary/Keyword: Mechanical Behaviour

Search Result 690, Processing Time 0.032 seconds

Crashworthy behaviour of rigid polyurethane foam under constant impact energy (동일 충격 에너지 조건에서의 발포 폴리우레탄의 충격특성에 관한 연구)

  • Munshi, Mahbubul Basit;Jeong, Kwang-Young;Choi, Young-Jong;Cheon, Seong-Sik
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.43-47
    • /
    • 2007
  • Based on experimental impact testing data, due to changing of velocity and mass of the impactor simultaneously under constant impact energy, crashworthiness of polyurethane foam has been observed. Dynamic tests were carried out in an instrumented impact-testing machine. Also, modified Sherwood-Frost model was proposed to investigate the crashworthy behaviour of rigid polyurethane foam under the condition of constant impact energy.

  • PDF

A springback analysis of LCD TV bottom chassis (LCD TV BOTTOM CHASSIS 스프링백 해석)

  • Lee, Sung-Geun;Jung, Jin-Oh;Kim, Seung-Kyu;Chung, Wan-Jin
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.63-66
    • /
    • 2012
  • In the manufacturing of a LCD TV bottom chassis, the distortion after forming should be suppressed below pre-defined amount to avoid contact with electric components. Finite element analysis procedure of forming and springback of a LCD TV bottom chassis is developed to investigate the distortion behaviour. It is shown that after the first forming large distortion occur due to uneven metal flow induced by various embossings. In the second forming, distortion is decreased by introducing bead that absorbs the excessive metal flow. It is proved that analysis method could describe these behaviour effectively. The developed analysis method can be used to find the proper location and shape of bead more quickly and effectively.

  • PDF

Modeling and Simulation for PIG Flow Control in Natural Gas Pipeline

  • Nguyen, Tan-Tien;Kim, Sang-Bong;Yoo, Hui-Ryong;Park, Yong-Woo
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.8
    • /
    • pp.1165-1173
    • /
    • 2001
  • This paper deals with dynamic analysis of Pipeline Inspection Gauge (PIG) flow control in natural gas pipelines. The dynamic behaviour of PIG depends on the pressure differential generated by injected gas flow behind the tail of the PIG and expelled gas flow in front of its nose. To analyze dynamic behaviour characteristics (e.g. gas flow, the PIG position and velocity) mathematical models are derived. Tow types of nonlinear hyperbolic partial differential equations are developed for unsteady flow analysis of the PIG driving and expelled gas. Also, a non-homogeneous differential equation for dynamic analysis of the PIG is given. The nonlinear equations are solved by method of characteristics (MOC) with a regular rectangular grid under appropriate initial and boundary conditions. Runge-Kutta method is used for solving the steady flow equations to get the initial flow values and for solving the dynamic equation of the PIG. The upstream and downstream regions are divided into a number of elements of equal length. The sampling time and distance are chosen under Courant-Friedrich-Lewy (CFL) restriction. Simulation is performed with a pipeline segment in the Korea gas corporation (KOGAS) low pressure system. Ueijungboo-Sangye line. The simulation results show that the derived mathematical models and the proposed computational scheme are effective for estimating the position and velocity of the PIG with a given operational condition of pipeline.

  • PDF

A Study on the Mechanical Behaviour of Steel-basalt Composite Pipe (철강-현무암 복합재료 파이프의 역학적 거동에 관한 연구)

  • Kim, Jong-Do;Wang, Jee-Seok;Yoon, Hee-Jong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.401-409
    • /
    • 2007
  • Because of the various excellent characteristics of cast basalt materials. such as, anti-corrosion, anti-wearing, good hardness. high chemical stability, of which steel may not possess, the steel-basalt composite pipes are used in severe environments for compensating the defects of steel. However. without sufficient mechanical investigation prior to application. the basalt liners in steel-basalt composite pipes may be cracked and broken or the basalt liners are omitted from steel pipes in applications. In these cases, the merits of basalt materials may disappear and the basalt liners may not play their good roles as expected. Therefore, it is required that mechanical behavior of steel-basalt composite pipes and surrounding environments be fully examined before installation. The limit of bending moment with which steel-basalt composite pipe may safely endure is calculated and the limit curvature of the composite pipe in the safe range is presented in this paper. The temperature distributions and the thermal stresses are also computed and the limit difference of temperatures between inner and outer side of composite pipe is given together.

Modeling of Spray Impingement and Fuel Film Formation in HSDI Diesel Engines (고속직분식 디젤엔진에서의 분무충돌과 연료액막형성 모델링)

  • Kim, Man-Sik;Min, Gyeong-Deok;Gang, Bo-Seon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.187-194
    • /
    • 2001
  • Spray impingement and fuel film formation models were developed and incorporated into the computational fluid dynamics code. STAR-CD. The spray/wall interaction process was modeled by considering the change of behaviour with surface temperature conditions and the fuel film formation. We divided the behaviour of fuel droplets after impingement into rebound, spread and splash using the Weber number and the parameter K. The Spray impingement model accounts for mass conservation, energy conservation and heat transfer to the impinging droplets. The fuel film formation model was developed by integrating the continuity, Navier-Stokes and energy equations along the direction of fuel film thickness. Validation of the models was conducted using previous diesel spray experimental data and the present experimental results for the gasoline spray impingement. In all the cases, the prediction compared reasonably well with the experimental results. The spray impingement and fuel film formation models have been applied to the spray/wall impingement in high speed direct injection diesel engines.

Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators

  • Akbari, Samin;Fallahi, Fatemeh;Pirbodaghi, Tohid
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.312-321
    • /
    • 2016
  • Dynamic behaviour of a slider-crank mechanism associated with a smart flexible connecting rod is investigated. Effect of various mechanisms' parameters including crank length, flexibility of the connecting rod and the slider's mass on the dynamic behaviour is studied. Two control schemes are proposed for elastodynamic vibration suppression of the flexible connecting rod and also obtaining a constant angular velocity for the crank. The first scheme is based on feedback linearization approach and the second one is based on a sliding mode controller. The input signals are applied by an electric motor located at the crank ground joint, and two layers of piezoelectric film bonded to the top and bottom surfaces of the connecting rod. Both of the controllers successfully suppress the vibrations of the elastic linkage.

Ductile Fracture Behaviour under Mode I Loading Using Rousellier Ductile Damage Theory

  • Oh, Dong-Joon;Howard, I.C.;Yates, J.R.
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.978-984
    • /
    • 2000
  • The aim of this study is to investigate the ductile fracture behaviour under Mode I loading using SA533B pressure vessel steel. Experiments consist of the Round Notch Bar Test (RNB), Single Edge Crack Bending Test (SECB), and V-Notch Bar Test (VNB). Results from the RNB test were used to tune the damage modelling constant. The other tests were performed to acquire the J-resistance curves and to confirm the damage constants. Microstructural observation includes the measurement of crack profile to obtain the roughness parameter. Finally, simulation using Rousellier Ductile Damage Theory (RDDT) was carried out with 4-node quadrilateral element ($L_c=0.25\;mm$). For the crack advance, the failed element removal technique was adopted with a ${\beta}$ criterion. In conclusion, the predicted simulation using RDDT showed a good agreement with the experimental results. A trial using a roughness parameter was made for a new evaluation of J-resistance curve, which is more conservative than the conventional one.

  • PDF

RESEARCH OF WELDING EFFECT ON STRUCTURAL INTEGRITY AT HIGH TEMPERATURE

  • Tu, Shan-Tung;Yoon, Kee-Bong
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.11-24
    • /
    • 1998
  • The invention of fusion wilding technology has brought on a revolutionary change in manufacturing industry which enables the construction of large scale high temperature plants in chemical, petrochemical and power generation industries. However, among the failure cases of high temperature components, premature failures of weldments have taken a large percentage that indicates the detrimental effect of welding on structural integrity. The accurate prediction of the high temperature behaviour of welded components is thus becoming increasingly important in order to realise an optimised design and maintenance of a plant life. In the present paper, recent research activities on high temperature behaviour of welded structures are briefly summarised. A local deformation measuring technique is proposed to determine the creep properties of weldment constituents. A damage mechanics approach is introduced to study the life reduction and ductility reduction due to the presence of a weld in high temperature structures. Finally, the high temperature creep crack growth in weldments is discussed.

  • PDF

Advances in modelling the mechanisms and rheology of electrorheological fluids

  • See, Howard
    • Korea-Australia Rheology Journal
    • /
    • v.11 no.3
    • /
    • pp.169-195
    • /
    • 1999
  • An electrorheological fluid (ERF) is typically a suspension of semi-conducting solid particles dispersed in an insulating carrier fluid, and shows a dramatic change in rheological properties when an external electric field is applied. This rapid and reversible change in flow properties has potential application in many electronically controlled mechanical devices, but the development of efficient devices and optimal materials for ERF is still hindered by incomplete understanding of the fundamental physical mechanisms involved. In recent years there have been considerable advances In relating microstructural models to the rheological behaviour, and these will form the basis of this review. Results of the theoretical calculations and simulations will be compared to the key experimental evidence available. An overview of the fundamental physical concepts behind electrorheological fluid behaviour will also be presented.

  • PDF

Dynamic visco-hyperelastic behavior of elastomeric hollow cylinder by developing a constitutive equation

  • Asgari, Masoud;Hashemi, Sanaz S.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.601-619
    • /
    • 2016
  • In this study, developments of an efficient visco-hyperelastic constitutive equation for describing the time dependent material behavior accurately in dynamic and impact loading and finding related materials constants are considered. Based on proposed constitutive model, behaviour of a hollow cylinder elastomer bushing under different dynamic and impact loading conditions is studied. By implementing the developed visco-hyperelastic constitutive equation to LS-DYNA explicit dynamic finite element software a three dimensional model of the bushing is developed and dynamic behaviour of that in axial and torsional dynamic deformation modes are studied. Dynamic response and induced stress under different impact loadings which is rarely studied in previous researches have been also investigated. Effects of hyperelastic and visco-hyperelastic parameters on deformation and induced stresses as well as strain rate are considered.