• Title/Summary/Keyword: Mechanical Aloying

Search Result 2, Processing Time 0.019 seconds

Application of Pseud-superplastic PM Process to Ti-Al Intermetallic Compound for MEMS Parts

  • Miyano, Naoki;Kumagai, Yusuke;Yoshimoto, Masayoshi;Nishimura, Yuta;Tanaka, Shigeo;Ameyama, Kei
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1292-1293
    • /
    • 2006
  • A non-equilibrium powder metallurgy processing such as an MA/SPS (Mechanical Alloying / Spark Plasma Sintering) process is examined in a Ti-48moll%Al. TiAl intermetallic compound is a potential light-weight/high-temperature structural material. One of the major problems, however, limiting the practical use of the material is its poor workability. From this point, the powder metallurgy (PM) processing route has been attractive alternative of the conventional processing for such material The MA/SPS process is able to apply to a LIGA process. Optimization of the pseudo-superplasticity enables to fabricate micro-parts made of fine grained ceramics composites of TiAl by the LIGA process.

  • PDF

Solid State Reduction of Haematite by Mechanical Alloying Process (기계적 합금화법에 의한 헤마타이트의 고상환원)

  • 이충효;홍대석;이만승;권영순
    • Journal of Powder Materials
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2002
  • The efects of mechanical aloying conditions and the type of reducing agent on the solid state reductionof haematite $Fe_2O_3$ have been investigated at room temperature. Aluminium titanium zinc and copper were used as reducing agent. Nanocomposites of metal-oxide in which oxide particles with nano size were dispersed in Fe matrix were obtained by mechanical alloying of $Fe_2O_3$ with aluminium and titanium respectively However the reduction of $Fe_2O_3$ by coppe was not occurred Composite materials of iron with $Al_2O_3$ and $TiO_2$ were obtained from the system of $Fe_2O_3-Al$ and $Fe_2O_3-Ti$ after ball milling for 20 hrs and 30 hrs respectively. And the system of $Fe_2O_3-Zn$ resulted in the formationof FeO with ZnO after ball milling of 120 hrs. The final grain sizes of iron estimated by X-ray diffraction line-width measurement were in the ranges of 24~33 nm.