• Title/Summary/Keyword: Measuring Tube

Search Result 344, Processing Time 0.025 seconds

A Prediction Model for TVOC and HCHO Emission of Paint Materials (페인트에서 방출되는 TVOC 및 HCHO 방출량 예측모델)

  • Kim, Hyung-Soo;Lee, Kyung-Hoi
    • KIEAE Journal
    • /
    • v.3 no.1
    • /
    • pp.13-20
    • /
    • 2003
  • It is highly recognized that there is need for protection against indoor air pollution, as we realize environmental pollution is growing, For example, in an indoor environment, a person spends more than 80 percent of their time inside the building. Thus, concern about indoor decoration materials is growing, since they cause pollution in the rooms of an apartment, as well as in offices. As the indoor decoration materials become more diverse and lusurious, so the effect of VOCs(Volatile Organic Compounds) and HCHO(Formaldehy) is growing. The indoor decoration materials cause the Sick Building Syndrome, such as headaches, dizziness, or lack of concentraion, and they in turn cause serious deterioration in people's health. In this study, I probed the status of the indoor air pollution and carried on an investigation and analysis about the prevention technique. In doing so, I performed experimental tests and an assessment of the indoor decoration materials of an apartment. I also examined elements of the emitted and the emission. Finally, I examined the character of emissions, by changing environmental conditions, such as the temperature, humidity, and ventilation. With respect to VOCs tests, I applied the method of solid state adsorption using the adsorptive tube, based on the measurement of the American EPA TO-17, ASTM 5116-97, and the measurement of the Japanese Wall Decoration Industrial Association. The tested sample was analyzed by High Performance Liquid Chromatography, after going through the process of dissolvent extraction. As subjects of the test, Paint were selected. The process of this test is as follows; first, I figured out the character of the emission, by measuring the emitted concentration of VOCs and HOHC from the indoor decoration materials of an apartment. Second, I made a small-scale chamber and the test was processed in the chamber in order to suggest an environment-friendly prediction modlel development.

The estimation of thermal diffusivity using NPE method (비선형 매개변수 추정법을 이용한 열확산계수의 측정)

  • 임동주;배신철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.6
    • /
    • pp.1679-1688
    • /
    • 1990
  • The method of nonlinear parameter estimation(NPE), which is a statistical and an inverse method, is used to estimate the thermal diffusivity of the porous insulation material. In order to apply the NPE method for measuring the thermal diffusivity, and algorithm for programing suitable to IBM personal computer is established, and is studied the statistical treatment of experimental data and theory of estimation. The experimental data obtained by discrete measurement using a constant heat flux technique are used to find the boundary conditions, initial conditions, and the thermal diffusivity, and then the final values are compared with the values obtained by some different methods. The results are presented as follows:(1) NPE method is used to establish the estimation of the thermal diffusivity and compared results with experimental output shows, that this method can be applicable to define the thermal diffusivity without considering hear flux types. (2) Because of all of the temperatures obtained by the discrete measurement on each steps of time are used to estimate the thermal diffusivity. Although some error in the temperature measurements of temperature are included in estimating process, its influences on the final value are minimzed in NPE method. (3) NPE method can reduce the experimental time including the time of data collecting in a few minutes and can take smaller specimen compared with steady state method. If the tube-type furnace is used, also the adjusting time of surrounding temperature can be reduced.

Development of Blood Pressure Simulator for Test of the Arm-type Automatic Blood Pressure Monitor (팔뚝형 자동혈압계 평가용 혈압 시뮬레이터 개발)

  • Kim, S.H.;Yun, S.U.;Cho, M.H.;Lee, S.J.;Lim, M.H.;Seo, S.Y.;Jeon, G.R.
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.239-246
    • /
    • 2015
  • Blood pressure is possible to diagnose a disease associated with blood pressure and judgment the current health of patients. Automatic blood pressure monitor capable of measuring a blood pressure easily in hospital and at home have become spread. In this study, we developed the blood pressure simulator (BPS) that can test the arm-type automatic blood pressure monitor that is commonly used in hospital. BPS is to produce a pressure similar to the pressure wave generated in the human blood using a servo disk motor. Then, using the silicon tube, it implements the situations such as human blood vessels, and to output the generated pressure waveform. Simply the BPS's phantom put on the cuff and it is able to simulate blood pressure. So anyone can quickly test the blood pressure monitor within one minute and it is possible to shorten the test time required for the automatic blood pressure monitor. In Performance test, the trends and the standard deviation of the values measured in the BPS is similar to the value of the measured pressure from people with normal blood pressure. Thus, the development BPS showed a possibility of taking into account the actual blood pressure measurement environment simulator.

Effects of Self-directed Feedback Practice using Smartphone Videos on Basic Nursing Skills, Confidence in Performance and Learning Satisfaction (스마트 폰 동영상을 활용한 피드백 자율실습이 기본간호수기 수행능력, 수행자신감 및 학습만족도에 미치는 효과)

  • Lee, Seul Gi;Shin, Yun Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.46 no.2
    • /
    • pp.283-292
    • /
    • 2016
  • Purpose: This study was done to verify effects of a self-directed feedback practice using smartphone videos on nursing students' basic nursing skills, confidence in performance and learning satisfaction. Methods: In this study an experimental study with a post-test only control group design was used. Twenty-nine students were assigned to the experimental group and 29 to the control group. Experimental treatment was exchanging feedback on deficiencies through smartphone recorded videos of nursing practice process taken by peers during self-directed practice. Results: Basic nursing skills scores were higher for all items in the experimental group compared to the control group, and differences were statistically significant ["Measuring vital signs" (t=-2.10, p=.039); "Wearing protective equipment when entering and exiting the quarantine room and the management of waste materials" (t=-4.74, p<.001) "Gavage tube feeding" (t=-2.70, p=.009)]. Confidence in performance was higher in the experimental group compared to the control group, but the differences were not statistically significant. However, after the complete practice, there was a statistically significant difference in overall performance confidence (t=-3.07. p=.003). Learning satisfaction was higher in the experimental group compared to the control group, but the difference was not statistically significant (t=-1.67, p=.100). Conclusion: Results of this study indicate that self-directed feedback practice using smartphone videos can improve basic nursing skills. The significance is that it can help nursing students gain confidence in their nursing skills for the future through improvement of basic nursing skills and performance of quality care, thus providing patients with safer care.

Development of a Digital Soil Tensiometer using Porous Ceramic Cups (다공 세라믹 컵을 이용한 디지털 토양수분 장력계 개발)

  • Jung, In-Kyu;Chang, Young-Chang;Kim, Ki-Bok;Kim, Yong-Il;Chung, Sun-Ok
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.448-454
    • /
    • 2007
  • This study was conducted to develop a 100 kPa soil tensiometer mainly consisted of a porous ceramic cup, water-holding tube, and a digital vacuum gauge, through theoretical design analysis and experimental performance evaluation. Major findings were as follows. 1. Theoretical analysis showed that air entry value of a porous media decreased as the maximum effective size of the pore increased, and the maximum diameter of the pores was $2.9\;{\mu}m$ for measuring up a 100 kPa of soil-water tension. 2. Property analysis of tensiometer porous cups supplied in Korean domestic market indicated that main components were $SiO_2$ and $Al_2O_3$ with a porosity range of $33.8{\sim}49.3%$. 3. The porous cup selected through sample fabrication and air-permeability tests showed weight ratios of 87% and 11% for $Al_2O_3$ and $SiO_2$. The analysis of SEM (scanning electron microscope) images showed that the sample was sintered at temperatures of about $1150^{\circ}C$, which consisted of pores with sizes of up to 25% of those for commercial porous cups. 4. The prototype soil tensiometer was fabricated using the developed porous cup and a digital vacuum gauge that could measure water tension with a pressure of 85 kPa in air tests. 5. In-soil tests of the prototype conducted during a period of 25-day drying showed that soil-water tension values measured with the prototype and commercial units were not significantly different, and soil-water characteristic curves could be established for different soils, confirming accuracy and stability of the prototype.

Respiratory air flow measuring technique without sensing element on the flow stream (호흡경로 상에 감지소자가 없는 새로운 호흡기류 계측기술)

  • Lee, In-Kwang;Park, Jun-Oh;Lee, Su-Ok;Shin, Eun-Young;Kim, Kyung-Chun;Kim, Kyung-Ah;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.294-300
    • /
    • 2009
  • Cardiopulmonary resuscitation(CPR) is performed by artificial ventilation and thoracic compression for the patient under emergent situation to maintain at least the minimum level of respiration and blood circulation for life survival. Quality of the pre-hospital CPR not only significantly affects the patient's survival rate but also minimizes side effects caused by CPR. Good quality CPR requires monitoring respiration, however, traditional respiratory air flow transducers cannot be used because the transducer elements are located on the flow axis. The present study developed a new technique with no physical object on the flow stream but enabling the air flow measurement and easily incorporated with the CPR devices. A turbulence chamber was formed in the middle of the respiratory tube by locally enlarging the cross-sectional area where the flow related turbulence was generated inducing energy loss which was in turn converted into pressure difference. The turbulence chamber was simply an empty enlarged air space, thus no physical object was placed on the flow stream, but still the flow rate could be evaluated. Both inspiratory and expiratory flows were obtained with symmetric measurement characteristics. Quadratic curve fitting provided excellent calibration formula with a correlation coefficient>0.999 (P<0.0001) and the mean relative error<1 %. The present results can be usefully applied to accurately monitor the air flow rate during CPR.

Characteristic analysis of a thermochromic material based fiber-optic temperature sensor for measuring temperature of subsurface water (열변성 물질을 이용한 지하수 온도 측정용 광섬유 온도센서의 특성분석)

  • Seo, Jeong-Ki;Yoo, Wook-Jae;Cho, Dong-Hyun;Jang, Kyoung-Won;Heo, Ji-Yeon;Lee, Bong-Soo;Koh, Yong-Kwon
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.467-474
    • /
    • 2009
  • In this study, we describe the feasibility of developing a fiber-optic temperature sensor using a thermochromic material such as 2,4,5-triphenylimidazole or also called Lophine. A sensor-tip is fabricated by mixing of a Lophine powder, which has a non-toxic and hydrophobic characteristics, and an epoxy resin. The temperature change in the sensor-tip gives rise to a change in the optical absorbance of the Lophine, and the transmittance of a light through the Lophine is also changed. We have measured the intensities of modulated lights due to the change of optical absorbance of the Lophine by using of a photo-multiplier tube(PMT). The relationships between the temperatures and the output voltages of PMT are determined to measure the temperature of water. The measurable temperature range of the fiber-optic sensor is from 5 to $30^{\circ}C$.

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Quantitative Analysis of Spatial Resolution for the Influence of the Focus Size and Digital Image Post-Processing on the Computed Radiography (CR(Computed Radiography)에서 초점 크기와 디지털영상후처리에 따른 공간분해능의 정량적 분석)

  • Seoung, Youl-Hun
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.407-414
    • /
    • 2014
  • The aim of the present study was to carry out quantitative analysis of spatial resolution for the influence of the focus size and digital image post-processing on the Computed Radiography (CR). The modulation transfer functions of an edge measuring method (MTF) was used for the evaluation of the spatial resolution. The focus size of X-ray tube was used the small focus (0.6 mm) and the large focus (1.2 mm). We evaluated the 50% and 10% of MTF for the enhancement of edge and contrast by using multi-scale image contrast amplification (MUSICA) in digital image post-processing. As a results, the edge enhancement than the contrast enhancement were significantly higher the spatial resolution of MTF 50% in all focus. Also the spatial resolution of the obtained images in a large focus were improved by digital image processing. In conclusion, the results of this study should serve as a basic data for obtain the high resolution clinical images, such as skeletal and chest images on the CR.

Study on dose and image quality by Added filter and Grid change when exam abdominal fluoroscopy (복부투시조영 검사 시 Added filter와 Grid 변화에 따른 선량 및 화질에 관한 연구)

  • Hong, Seon Sook;Kang, Kyeong Mi;Seong, Min Suk;Lee, Jong Woong
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.2
    • /
    • pp.47-56
    • /
    • 2012
  • Amount of radiation exposure by seeing through fluoroscopy examination while is many patient exposure administration and unprepared misgovernment be. In this study, abdominal fluoroscopy during the scan, the dose and image quality change according to the use of grid and added filter optimized by measuring the test condition is proposed. Uses seeing through fluoroscopy examination equipment of Image Intensifier of Easy Diagnost Eleva (Philips), under tube type and uses Human phantom and measures average area dose according to grid insertion existence and nonexistence and added filter kind change. Measure sum of 29 organ dose and effective dose through PCXMC imagination simulation program and image J program through noise, SNR, image distortion was measured. Resolution, sharpness, and analyzed using the MTF curves. Fluorography the grid to insert the filter thickness and thickening and increased the average area dose and organ doses and effective dose. In the case of spot examination, when inserted grid, average area dose and organ dose and effective dose increased. Filter thickens the average area dose decreased, but the organ doses and effective dose were increased when use 0.2mmCu+1mmAl filter, decreased slightly. Noise and SNR measurements without inserting the gird, if you do not use the added filter was the lowest and when measure the distortion, 0.1mmCu+1mmAl filter was no difference of image quality in case insert grid was judged that when did not use occasion added filter that do not use grid, difference of image quality does not exist. Did not show a big difference, according to the grid and uses of the added filter sharpness, and resolution. Patient dose increases with factors that reduce the quality of the image so reckless grid and the use of the added filter when abdominal fluoroscopy examination should be cautious in using.

  • PDF