• Title/Summary/Keyword: Measurement of the Position of the Sun

Search Result 118, Processing Time 0.046 seconds

Analysis of Sun Tracking Performance of Various Types of Sun Tracking System used in Parabolic Dish Type Solar Thermal Power Plant (접시형 태양열 발전시스템에서 사용하는 여러 가지 형태의 태양추적시스템의 태양추적성능 분석)

  • Seo, Dong-Hyeok;Park, Young-Chil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.4
    • /
    • pp.388-396
    • /
    • 2011
  • Sun tracking system is the most important subsystem in parabolic dish type solar thermal power plant, since it determines the amount of thermal energy to be collected, thus affects the efficiency of solar thermal power plant most significantly. Various types of sun tracking systems are currently used. Among them, use of photo sensors to located the sun(which is called sensor type) and use of astronomical algorithm to compute the sun position(which is called program type) are two of the mostly used methods. Recently some uses CCD sensor, like CCD camera, which is called image processing type sun tracking system. This work is concerned with the analysis of sun tracking performance of various types of sun tracking systems currently used in the parabolic dish type solar thermal power plant. We first developed a sun tracking error measurement system. Then, we evaluate the performance of five different types of sun tracking systems, sensor type, program type, hybrid type(use of sensor and computed sun position simultaneously), tracking error compensated program type and image processing type. Experimentally obtained data shows that the tracking error compensated program type sun tracking system is very effective and could provide a good sun tracking performance. Also the data obtained shows that the performance of sensor type sun tracking system is being affected by the cloud significantly, while the performance of a program type sun tracking system is being affected by the sun tracking system's mechanical and installation errors very much. Finally image processing type sun tracking system can provide accurate sun tracking performance, but costs more and requires more computational time.

Analysis on the Measurement and Shape Classification of the Head and Face for Korean Male Children aged $9{\sim}12$ years ($9{\sim}12$세 남자 아동의 머리와 얼굴 부위 측정 및 유형 분류)

  • Lee Hyun-Min;Choi Hei-Sun;Kim Son-Hee
    • The Research Journal of the Costume Culture
    • /
    • v.12 no.6 s.53
    • /
    • pp.933-944
    • /
    • 2004
  • This study was aimed to provide the fundamental and various measurement data of the head and face for male children. Two hundred forty one male children, aged nine to twelve years, participated for this study. The 31 regions on the head and face of the subjects were directly measured by the expert experimenters. Through factor analysis, the six factors were extracted upon factor scores and those factors comprised $67.47\%$ for the total variances. The first factor was described the general height elements for the mouth and the environs of the mouth. The second factor was described the general height around the nose, forehead and eyes. The third factor was described the height of the ear environs. The forth factor contained the length around the sinciput to the occiput, the head thick and the head circumstance. The fifth factor was described the general width of the outer head and the corner of the eyes. The last factor contained the depth of the mouth and nose. Four clusters as their head and face shape were categorized using six factor scores by cluster analysis. Type 1 was characterized by the shortest head and face width, surface length and girth, and the shorter length of head, but the highest position of chin, philtrum, upper lip. Type 2 was characterized by the shortest head and face length and thickness, and the lowest position of the forehead, eye, nose, mouth, ear environs, but that had wider width of head and face. Type 3 was characterized by the longest and the widest head and face type, and the highest position of the mouth. Type 4 was characterized by longer length of head and face, and the widest head girth and largest head thickness, and the highest position of the forehead, eye, nose environs. And this type had the widest width of nose and mouth, and the longest head surface length.

  • PDF

A Study on the Image-Based Luminance Measurement System Using the Measuring Position (측정 위치를 고려한 영상기반 휘도측정시스템에 관한 연구)

  • Sun, Eun-Hey;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.4
    • /
    • pp.424-429
    • /
    • 2014
  • In this paper, an image-based luminance measurement system(LMS) is proposed to measure the luminance of outdoor signboards. We design the LMS that can improve disadvantages of efficiency of the point-luminance meter and portability of face-luminance meter using the image of DSLR camera and print out the luminance value by using the proposed luminance analysis algorithm in real time. Outdoor signboards have various size and shape, and are also installed on the various place. Luminance of the signboard is influenced by measurement location, angle, color, etc. Therefore, we measure the change of luminance value in accordance with measurement location for accurate luminance measurement and then consider the luminance value according to the measurement distance. We obtain a numerical relation between luminance value and measurement location. The proposed LMS is verified through comparative experiment with point-luminance meter.

Analysis of refractive error according to the position of vision measurement using an automatic refractor (자동굴절검사기를 이용한 시력측정 자세에 따른 굴절이상도 분석)

  • Bong-Hwan, Kim;Sun-Hee, Han;Se-Hyeon, An;Chang-Seop, Sin;Won-Jeong, Jang;In-Seon, Hwang;Hyung-Soo, Kim
    • Journal of Korean Clinical Health Science
    • /
    • v.10 no.2
    • /
    • pp.1587-1593
    • /
    • 2022
  • Purpose. This study was to investigate the degree of refractive error that occurs depending on the measurement location of the subject when performing a refraction test using the automatic refractor. Methods. When performing the auto-refraction test, measurements were taken while increasing the distance between the forehead and the forehead rest, and the measurements were made by tilting the head clockwise and counterclockwise. Results. During the auto-refraction test, significant refractive error occurred when the forehead was not attached to the forehead support or the subject's head was turned clockwise or counterclockwise. Conclusions. When performing a refraction test using an automatic refractor, the examiner will have to pay attention to whether the subject's forehead is in close contact with the forehead rest, and whether the head is tilted.

Feasibility Study of Source Position Verification in HDR Brachytherapy Using Scintillating Fiber

  • Moon, Sun Young;Jeong, EunHee;Lim, Young Kyung;Chung, Weon Kyu;Huh, Hyun Do;Kim, Dong Wook;Yoon, Myonggeun
    • Progress in Medical Physics
    • /
    • v.27 no.4
    • /
    • pp.213-219
    • /
    • 2016
  • The position verification of the radiation source utilized in brachytherapy forms a critical factor in determining the therapeutic efficiency. Currently, films are used to verify the source position; however, this method is encumbered by the lengthy time interval required from film scanning to analysis, which makes real-time position verification difficult. In general, the source position accuracy is usually tested in a monthly quality assurance check. In this context, this study investigates the feasibility of the real-time position verification of the radiation source in high dose rate (HDR) brachytherapy with the use of scintillating fibers. To this end, we construct a system consisting of scintillating fibers and a silicon photomultiplier (SiPM), optimize the dosimetric software setup and radiation system characteristics to obtain maximum measurement accuracy, and determine the relative ratio of the measured signals dependent upon the position of the scintillating fiber. According to the dosimetric results based on a treatment plan, in which the dwell time is set at 30 and 60 s at two dwell positions, the number of signals is 31.5 and 83, respectively. In other words, the signal rate roughly doubles in proportion to the dwell time. The source position can also be confirmed at the same time. With further improvements in the spatial resolution and scintillating fiber array, the source position can be verified in real-time in clinical settings with the use of a scintillating fiber-based system.

Comparison of measurements from digital cephalometric radiographs and 3D MDCT-synthetized cephalometric radiographs and the effect of head position (디지털 측방두부규격방사선사진과 MDCT의 3차원 재구성 영상을 이용한 합성측방두부규격방사선사진의 계측치 비교 및 머리 위치가 미치는 효과)

  • Kim, Mi-Ja;Choi, Bo-Ram;Huh, Kyung-Hoe;Yi, Won-Jin;Heo, Min-SUk;Lee, Sam-Sun;Choi, Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.39 no.3
    • /
    • pp.133-147
    • /
    • 2009
  • Purpose : To investigate the reproducibilities and compare the measurements in digital and MDCT-synthesized cephalometric radiograph, and to investigate the effect of head position on the measurement during imaging with MDCT. Materials and Methods : Twenty-two dry skulls (combined with mandible) were used in this study. Conventional digital cephalometric radiograph was taken in standard position, and MDCT was taken in standard position and two rotated position ($10^{\circ}$ left rotation and $10^{\circ}$ right tilting). MDCT data were imported in $OnDemand^{(R)}$ and lateral cephalometric radiograph were synthesized from 3D virtual models. Two types of rotated MDCT data were synthesized with default mode and with corrected mode using both ear rods. For all six images, sixteen angular and eleven linear measurements were made in V-$Ceph^{(R)}$ three times. Reproducibility of measurements was assessed using repeated measures ANOV A and ICC. Linear and angular measurements were compared between digital and five MDCT-synthesized images by Student t-test. Results : All measurements in six types of cephalometric radiograph were not statistically different under ICC examination. Measurements were not different between digital and MDCT-synthesized images (P>.05). Measurements in MDCT-synthesized image in $10^{\circ}$ left rotation or $10^{\circ}$ right tilting position showed possibility of difference from digital image in some measurements, and possibility of improvement via realignment of head position using both ear rods. Conclusion : MDCT-synthesized cephalometric radiograph can substitute conventional cephalometric radiograph. The error on head position during imaging with MDCT have possibility that can produce measurement errors with MDCT-synthesized image, and these position error can be corrected by realignment of the head position using both ear rods.

  • PDF

A State Estimator for servo system using discrete Kalman Filter (이산형 칼만 필터를 이용한 서보 시스템의 상태 추정자 설계)

  • Shin, Doo-Jin;Yum, Hyung-Sun;Huh, Uk-Youl;Lee, Je-Hie
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.420-422
    • /
    • 1998
  • In this paper, we propose a position-speed control of servo system with a state estimator. And also we utilized two mass modelling in order to deals with real system accurately. The overall control system consists of two parts: the position-speed controller and state estimator. The Kalman filter applied as state - feedback controller is an optimal state estimator applied to a dynamic system that involves random perturbations and gives a linear,unbiased and minimun error variance recursive algorithm to estimate the unknown state optimally. Therefore we consider the error problem about the servo system modelling, the measurement noise at low-speed ranges a stochastic system, and implement a optimal state observer. Performance of the proposed state estimator are demonstrated by computer simulations.

  • PDF

Optimal Test Condition by Ultrasonic Simulation (초음파 시뮬레이션을 이용한 최적의 탐상조건)

  • Huh, Sun-Chul;Park, Young-Chul;Boo, Myung-Hwan;Kang, Jung-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.4 s.35
    • /
    • pp.45-54
    • /
    • 1999
  • Non destructive test is applied to revise mechanical strength and assume material strength or defect of material, equipment and structure, instead of fracture test. Especially, ultrasonic test has the characteristics such as an excellent permeability high-sensitiveness to fine defect and an almost exact measurement for position, size and direction of inner defect which differ from other non destructive tests. In this study, the program is developed to evaluate optimal testing condition, to distinguish obstacle echo and defect position. This program on the basic of Ray-Tracing model shows generation and processing of ultrasonic pulse. The simulation is compared with testing in the 3 cases of an oblique angle transducer like $45^{\circ},\;60^{\circ}\;and\;70^{\circ}$. The test result for all conditions is well compared with simulation result when relative not is within $0.1{\sim}7.2%$. And the course of several echos is simply assumed through simulation.

  • PDF

A study on a hot forging process monitoring for measurement of indirect forging force in flange bolt forming of titanium alloys (티타늄 합금 플랜지 볼트 성형에서의 단조력 간접 측정을 위한 열간 단조 공정 모니터링에 관한 연구)

  • Ha, Seok-Jae;Choi, Doo-Sun;Lee, Dong-Won;Song, Ki-Hyeok
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.14-20
    • /
    • 2021
  • The objective of this study is to introduce the new possibility of sensing technology based on inductive displacement sensors to monitor the status of wheel position in the hot forging process. In order to validate effectiveness of proposed sensing technology, the indirect forging force measurement with displacement sensor was applied into a typical closed hot forging die-set used for the manufacturing of flange bolts. The locations to implement the displacement sensor were selected carefully by simulating forming process and static structural. From the measurement results of the forging force change during one hot forging cycle, it was found that the proposed monitoring system can provide useful information to understand the detailed behaviors of die-set in the closed hot forging process.

CO2 EMISSION MEASURING METHODOLOGY DEVELOPMENT FOR ACCURACY IMPROVEMENT OF CO2 EMISSION OF CONSTRUCTION EQUIPMENT

  • Won-Suk Jang;Sun-Chan Bae;Sang-Dae Park;Suk-Hyun Kwon;Byung-Soo Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.204-208
    • /
    • 2013
  • CO2 emission makes up more than 80% of whole green gas. Therefore CO2 is recognized as the main culprit of global warming. IPCC (Intergovernmental Panel on Climate Change) is advising the 3 methods measuring CO2 emission. TIER1 is measured CO2 emission by criteria the energy consumption, TIER2 measure by criteria the emission factor according to the emission control technique each kind of vehicle, TIER3 is measured by criteria the distance each kind of vehicle. Currently, the most of CO2 emission measurement is used by TIER1. But it is not standardized that CO2 emission measurement method have the factor as work condition each distance. Specially, it is not suggest that methodology has the condition changing load of equipment according to site condition and the same position work as construction equipment. So, this study is suggested the CO2 emission measurement methodology of construction equipment.

  • PDF