• Title/Summary/Keyword: Measurement of Stiffness

Search Result 464, Processing Time 0.023 seconds

Ultrasonic Evaluation of Interfacial Stiffness for Nonlinear Contact Surfaces

  • Kim, Noh-Yu;Kim, Hyun-Dong;Cho, Youn-Ho
    • 비파괴검사학회지
    • /
    • 제28권6호
    • /
    • pp.504-511
    • /
    • 2008
  • This paper proposes an ultrasonic measurement method for measurement of linear interfacial stiffness of contacting surface between two steel plates subjected to nominal compression pressures. Interfacial stiffness was evaluated by using shear waves reflected at contact interface of two identical solid plates. Three consecutive reflection waves from solid-solid surface are captured by pulse-echo method to evaluate the state of contact interface. A non-dimensional parameter defined as the ratio of their peak-to-peak amplitudes are formulated and used to calculate the quantitative stiffness of interface. Mathematical model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves across the interface and to determine the interfacial stiffness. Two identical plates are fabricated and assembled to form contacting surface and to measure interfacial stiffness at different states of contact pressure by means of bolt fastening. It is found from experiment that the amplitude of interfacial stiffness is dependent on the pressure and successfully determined by employing pulse-echo ultrasonic method without measuring through-transmission waves.

의수 소켓 설계를 위한 6축 인체 탄성도 측정 장치 개발 (Development of 6-Axis Stiffness Measurement Device for Prosthetic Socket Design)

  • 오동훈;이슬아;최영진
    • 로봇학회논문지
    • /
    • 제14권1호
    • /
    • pp.58-64
    • /
    • 2019
  • The paper proposes a stiffness measurement device composed of a measurement part including six indenters and a fixing part including four fixtures. The device is able to make simultaneously measurements of the stiffness of human arm. The six indenters make use of both position and force control schemes sequentially whenever needed. In addition, the loadcells and the digital encoders are attached to the indenters and electric motors, respectively, so that the data can be provided in real time. On the end of the indenter, two-axis potentiometer is attached in order to measure the angle difference between the applied force axis and the axis normal to the skin of human arm, and to convert the force measured on the loadcell into the actual applied force to skin. For this purpose, the mapping between the voltage output and the angle of potentiometer was obtained by fitting it for each axis. Ultimately, the measurement device was able to measure the stiffnesses of six regions of human arm.

헬리콥터용 무베어링 로터 시스템의 강성 및 고유 진동수 측정 (The Measurement Test of Stiffness and Natural Frequencies for Bearingless Rotor System of Helicopter)

  • 윤철용;김덕관
    • 한국소음진동공학회논문집
    • /
    • 제25권12호
    • /
    • pp.881-887
    • /
    • 2015
  • The stiffness and natural frequencies for blades, flexbeam, and torque tube of bearingless rotor system are measured to determine the material input properties such as mass distributions and stiffness distribution for the rotor dynamics and load analysis. The flap stiffness, lag stiffness, and torsional stiffness are calculated by measuring section strain or twist angle, gages position, and applied loads through bending and twist tests. The modal tests are undertaken to find out the natural frequencies for flap, lag, torsion modes in non-rotating conditions. The stiffness values and mass properties are tuned and updated to match prediction frequencies to the measured frequencies. The rotorcraft comprehensive code(CAMRAD II) is used to analyze the natural frequencies of the specimens. The analysis results with the updated material properties agree well with the measured frequencies. The updated properties will be used to analyze the rotor stability, dynamic characteristics and loads for the rotor rotation test in a whirl tower.

Modelling and Measurements of Normal and Lateral Stiffness for Atomic Force Microscopy

  • Choi, Jinnil
    • Applied Science and Convergence Technology
    • /
    • 제23권5호
    • /
    • pp.240-247
    • /
    • 2014
  • Modelling and measurements of normal and lateral stiffness for atomic force microscopy (AFM) are presented in this work. Important issues, such as element discretisation, stiffness calibration, and deflection angle are explored using the finite element (FE) model. Elements with various dimension ratios are investigated and comparisons with several mathematical models are reported to verify the accuracy of the model. Investigation of the deflection angle of a cantilever is also shown. Moreover, AFM force measurement experiments with conical and colloid probe tips are demonstrated. The relationships between force and displacement, required for stiffness measurement, in normal and lateral directions are acquired for the conical tip and the limitations of the colloid probe tip are highlighted.

피스톤계 마찰 측정 장치 개발 (Development of Piston Friction Force Measurement System)

  • 하경표;김중수;조명래;오대윤
    • 대한기계학회논문집A
    • /
    • 제26권8호
    • /
    • pp.1608-1614
    • /
    • 2002
  • This Paper presents a novel piston friction force measurement system that has characteristics of relieving the Pressure force acting on the upper surface of the liner; the system uses general rubber O-rings for combustion chamber sealing, and does not need special changes to the piston top land. The lower supporter of the floating liner increases stiffness in liner axial direction, and results in the increase of natural frequency. The upper supporter has multi-layer structure designed fer low axial stiffness and high radial stiffness. With the use of the present system, the effects of variation in clearance and piston ring tension were studied.

A Study on the Measurement and Analysis of Whirling Vibration Behavior of Marine Propulsion Shafting System using Gap-sensors

  • Sun, Jin-Suk;Han, Tae-Min;Lee, Kang-Ki;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권2호
    • /
    • pp.130-135
    • /
    • 2015
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational rpm range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering from operating rpm up to target rpm, however, the range is un-measurable generally. In order to resolve the measurement issue, this study shows the measuring method and the assessment method of relevant natural frequency of whiling vibration by using measured harmonic order component of whirling vibration.

횡 진동 측정에 관한 연구 (A study on the whirling vibration measurement)

  • 선진석;오주원;김용철;김의간
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2012년도 전기공동학술대회 논문집
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, as a result of the application of large and multi-blade propellers with high efficiency for large vessels, the vertical bending stiffness of propulsion shafting system tends to be declined. For some specific vessels, the shaft arrangement leads to the forward stern tube bearing to be omitted, decreasing vertical bending stiffness. In this respect, decreased vertical bending stiffness causes the problem which is the blade order resonance frequency to be placed within the operational range of propulsion shafting system. To verify whirling vibration, the measurement should be carried out covering the range of MCR, however, the range is un-measurable. To resolve the measurement issue, this study shows the measuring method and the estimating method of whiling vibration by using resonance frequency of sub harmonic.

  • PDF

Shear modulus and stiffness of brickwork masonry: An experimental perspective

  • Bosiljkov, Vlatko Z.;Totoev, Yuri Z.;Nichols, John M.
    • Structural Engineering and Mechanics
    • /
    • 제20권1호
    • /
    • pp.21-43
    • /
    • 2005
  • Masonry is a composite non-homogeneous structural material, whose mechanical properties depend on the properties of and the interaction between the composite components - brick and mortar, their volume ratio, the properties of their bond, and any cracking in the masonry. The mechanical properties of masonry depend on the orientation of the bed joints and the stress state of the joints, and so the values of the shear modulus, as well as the stiffness of masonry structural elements can depend on various factors. An extensive testing programme in several countries addresses the problem of measurement of the stiffness properties of masonry. These testing programs have provided sufficient data to permit a review of the influence of different testing techniques (mono and bi-axial tests), the variations caused by distinct loading conditions (monotonic and cyclic), the impact of the mortar type, as well as influence of the reinforcement. This review considers the impact of the measurement devices used for determining the shear modulus and stiffness of walls on the results. The results clearly indicate a need to re-assess the values stated in almost all national codes for the shear modulus of the masonry, especially for masonry made with lime mortar, where strong anisotropic behaviour is in the stiffness properties.

베어링 강성 측정 (The Measurement of the Bearing Stiffness)

  • 김상욱;김진환;이용근;김보열;김영봉
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 학술대회 논문집 전문대학교육위원
    • /
    • pp.216-220
    • /
    • 2006
  • This paper is presented for the measurement of the bearing stiffness for the spindle motors. BLDC Spindle Motors for the Hard Disk Drive are used by several kinds of the bearings, such as ball bearing, fluid dynamic bearing, and aero dynamic bearing. The spindle motors are attached the platters to read and write the data. Because the platter rotates at high end speed with the load and can be shocked from a suddenly moving, the bearing needs the rated stiffness with the pressure. By the way, it has not been realized to measure the real stiffness for each bearing types. In this paper, we proposed the method of measuring the stiffness for the bearings by using the magnet force. Experimental results show the performance to measure the bearing stiffness of the BLDC spindle motors for an HDD.

  • PDF