• Title/Summary/Keyword: Measurement of Step Difference

Search Result 111, Processing Time 0.026 seconds

Damage detection in laminated beams by anti-optimization (반 최적화기법에 의한 적층복합보의 손상추적)

  • 이재홍
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.173-182
    • /
    • 1996
  • The present study proposes a detection technique for delaminations in a laminated compoiste structure. the proposed technique optimizes the spatial distribution of harmonic excitation so as to magnify the difference in response between the delaminated and intact structures. The technique is evaluated by numerical simulation of two-layered aluminum beams. Effects of measurement and geometric noises are included in the analysis. A finite element model for a delaminated beam, based on the layer-wise laminated plate theory in conjunction with a step function to simulate ddelaminations, is used.

  • PDF

Comparison and evaluation between 3D-bolus and step-bolus, the assistive radiotherapy devices for the patients who had undergone modified radical mastectomy surgery (변형 근치적 유방절제술 시행 환자의 방사선 치료 시 3D-bolus와 step-bolus의 비교 평가)

  • Jang, Wonseok;Park, Kwangwoo;Shin, Dongbong;Kim, Jongdae;Kim, Seijoon;Ha, Jinsook;Jeon, Mijin;Cho, Yoonjin;Jung, Inho
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.28 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • Purpose : This study aimed to compare and evaluate between the efficiency of two respective devices, 3D-bolus and step-bolus when the devices were used for the treatment of patients whose chest walls were required to undergo the electron beam therapy after the surgical procedure of modified radical mastectomy, MRM. Materials and Methods : The treatment plan of reverse hockey stick method, using the photon beam and electron beam, had been set for six breast cancer patients and these 6 breast cancer patients were selected to be the subjects for this study. The prescribed dose of electron beam for anterior chest wall was set to be 180 cGy per treatment and both the 3D-bolus, produced using 3D printer(CubeX, 3D systems, USA) and the self-made conventional step-bolus were used respectively. The surface dose under 3D-bolus and step-bolus was measured at 5 measurement spots of iso-center, lateral, medial, superior and inferior point, using GAFCHROMIC EBT3 film (International specialty products, USA) and the measured value of dose at 5 spots was compared and analyzed. Also the respective treatment plan was devised, considering the adoption of 3D-bolus and stepbolus and the separate treatment results were compared to each other. Results : The average surface dose was 179.17 cGy when the device of 3D-bolus was adopted and 172.02 cGy when step-bolus was adopted. The average error rate against the prescribed dose of 180 cGy was -(minus) 0.47% when the device of 3D-bolus was adopted and it was -(minus) 4.43% when step-bolus was adopted. It was turned out that the maximum error rate at the point of iso-center was 2.69%, in case of 3D-bolus adoption and it was 5,54% in case of step-bolus adoption. The maximum discrepancy in terms of treatment accuracy was revealed to be about 6% when step-bolus was adopted and to be about 3% when 3D-bolus was adopted. The difference in average target dose on chest wall between 3D-bolus treatment plan and step-bolus treatment plan was shown to be insignificant as the difference was only 0.3%. However, to mention the average prescribed dose for the part of lung and heart, that of 3D-bolus was decreased by 11% for lung and by 8% for heart, compared to that of step-bolus. Conclusion : It was confirmed through this research that the dose uniformity could be improved better through the device of 3D-bolus than through the device of step-bolus, as the device of 3D-bolus, produced in consideration of the contact condition of skin surface of chest wall, could be attached to patients' skin more nicely and the thickness of chest wall can be guaranteed more accurately by the device of 3D-bolus. It is considered that 3D-bolus device can be highly appreciated clinically because 3D-bolus reduces the dose on the adjacent organs and make the normal tissues protected, while that gives no reduction of dose on chest wall.

  • PDF

Comparison of OC and EC Measurement Results Determined by Thermal-optical Analysis Protocols (열광학적 분석 프로토콜에 의한 유기탄소와 원소탄소 측정값 비교)

  • Kim, Hyosun;Jung, Jinsang;Lee, Jinhong;Lee, Sangil
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.5
    • /
    • pp.449-460
    • /
    • 2015
  • Carbonaceous aerosol is generally classified into OC (organic carbon) and EC (elemental carbon) by thermal optical analysis. Both NIOSH (National institute of occupational safety and health) with high temperature (HighT) and IMPROVE-A (Interagency monitoring of protected visual environments) with low temperature (LowT) protocols are widely used. In this study, both protocols were applied for ambient $PM_{2.5}$ samples (Daejeon, Korea) in order to underpin differences in OC and EC measurements. An excellent agreement between NIOSH and IMPROVE-A protocol was observed for TC (total carbon). However, significant differences between OC and EC appeared and the differences were larger for EC than OC. The main differences between two protocols are temperature profile and charring correction method. For the same charring correction method, HighT_OC was 10% higher than LowT_ OC, while HighT_EC was 15% and 33% lower than LowT_EC for TOT (thermal-optical transmittance) and TOR (thermal-optical reflectance), respectively. This difference may be caused by the temperature of OC4 in He step and possibly difference in POC (pryorilized OC) formation. For the same temperature profile, OC by TOT was about 26% higher than that by TOR. In contrast, EC by TOT was about 50% lower than that by TOR. POC was also dependent on both temperature profile and the charring correction method, showing much distinctive differences for the charring correction method (i.e., POC by TOT to POC by TOR ratio is about 2). This difference might be caused by different characteristics between transmittance and reflectance for monitoring POC formation within filters. Results from this study showed that OC and EC depends on applied analysis protocol as shown other studies. Because of the nature of the thermal optical analysis, it may not be possible to have an absolute standard analysis protocol that is applicable for any ambient $PM_{2.5}$. Nevertheless, in order to provide consistent measurement results for scientists and policy makers, future studies should focus on developing a harmonized standard analysis protocol that is suitable for a specific air domain and minimizes variations in OC and EC measurement results. In addition, future elaborate studies are required to find and understand the causes of the differences.

Three-dimensional accuracy of different correction methods for cast implant bars

  • Kwon, Ji-Yung;Kim, Chang-Whe;Lim, Young-Jun;Kwon, Ho-Beom;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.1
    • /
    • pp.39-45
    • /
    • 2014
  • PURPOSE. The aim of the present study was to evaluate the accuracy of three techniques for correction of cast implant bars. MATERIALS AND METHODS. Thirty cast implant bars were fabricated on a metal master model. All cast implant bars were sectioned at 5 mm from the left gold cylinder using a disk of 0.3 mm thickness, and then each group of ten specimens was corrected by gas-air torch soldering, laser welding, and additional casting technique. Three dimensional evaluation including horizontal, vertical, and twisting measurements was based on measurement and comparison of (1) gap distances of the right abutment replica-gold cylinder interface at buccal, distal, lingual side, (2) changes of bar length, and (3) axis angle changes of the right gold cylinders at the step of the post-correction measurements on the three groups with a contact and non-contact coordinate measuring machine. One-way analysis of variance (ANOVA) and paired t-test were performed at the significance level of 5%. RESULTS. Gap distances of the cast implant bars after correction procedure showed no statistically significant difference among groups. Changes in bar length between pre-casting and post-correction measurement were statistically significance among groups. Axis angle changes of the right gold cylinders were not statistically significance among groups. CONCLUSION. There was no statistical significance among three techniques in horizontal, vertical and axial errors. But, gas-air torch soldering technique showed the most consistent and accurate trend in the correction of implant bar error. However, Laser welding technique, showed a large mean and standard deviation in vertical and twisting measurement and might be technique-sensitive method.

The Case of Measurement for Shallow Soil Tunnel with Pre-Supported Nail Method (저토피 토사터널에 적용된 선지보 네일공법의 시공 및 계측사례)

  • Seo, Dong-Hyun;Lee, Seung-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.69-79
    • /
    • 2012
  • This pre-supported nail method is able to decrease ground displacements more than NATM because this method reinforces ground with grouted steels before tunnel excavation. Therefore this method has advantage of being able to increase the stability and workability. This study presents applicability of pre-supported nail method with case of site measurement for shallow tunnel composed with high groundwater level and unconsolidated soil, performs this research the mechanism of new supporting system is compared with the conventional existing supporting system in terms of soil reinforcement. NATM has characteristics that construction stage displacement of the apparent height difference is observed in the step of divided excavation processing. Otherwise it is analyzed that pre-supported nail method is not sensitive in the displacement problem of excavation processing in comparison to NATM. It is found that this method is very applicable in shallow depth tunnel such as portal area, tunnel in soil and weak zone without arching effect.

Buffeting Response Correction Method based on Dynamic Properties of Existing Cable-Stayed Bridge (공용 사장교의 동적특성을 반영하는 버페팅 응답보정법)

  • Kim, Byeong Cheol;Yhim, Sung Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.71-80
    • /
    • 2013
  • According to design specifications for structural safety, a bridge in initial design step has been modelled to have larger self-weight, external loads and less stiffness than those of real one in service. Thereby measured buffeting responses of existing bridge show different distributions from those of the design model in design step. In order to obtain accurate buffeting responses of the in-site bridge, the analysis model needs to be modified by considering the measured natural frequencies. Until now, a Manual Tuning Method (MTM) has been widely used to obtain the Measurement-based Model(MBM) that has equal natural frequencies to the real bridge. However, since state variables can be selected randomly and its result is not apt to converge exact rapidly, MTM takes a lot of effort and elapsed time. This study presents Buffeting Response Correction Method (BRCM) to obtain more exact buffeting response above MTM. The BRCM is based on the idea the commonly used frequency domain buffeting analysis does not need all structural properties except mode shapes, natural frequencies and damping ratio. BRCM is used to improve each modal buffeting responses of the design model by substituting measured natural frequencies. The measured natural frequencies are determined from acceleration time-history in ordinary vibration of the real bridge. As illustrated examples, simple beam is applied to compare the results of BRCM with those of a assumed MBM by numerical simulation. Buffeting responses of BRCM are shown to be appropriate for those of in-site bridge and the difference is less than 3% between the responses of BRCM and MTM. Therefore, BRCM can calculate easily and conveniently the buffeting responses and improve effectively maintenance and management of in-site bridge than MTM.

The Effect of 12-week Weight Training with Muscle Strength, Agility Training on Physical Fitness Factors and Isokinetic Muscle Function in of Elementary School Male Soccer Players (초등학교 남자 축구선수들의 12주간 근파워 및 민첩성 트레이닝이 체력요인, 등속성 근기능에 미치는 영향)

  • Kim, Ji-Sun
    • Journal of the Korean Applied Science and Technology
    • /
    • v.39 no.4
    • /
    • pp.527-534
    • /
    • 2022
  • The purpose of this study was to investigate the effects of 12 weeks of muscle power and agility training on physical fitness factors and isokinetic muscle function in elementary school male soccer players. For this purpose, 6 muscle power and agility training programs were organized for 12 elementary school male soccer players and were conducted 3 times a week for 12 weeks. The results of measurement and analysis of physical fitness factors before and after the muscle strength and agility training are as follows. First, there was a significant difference in the standing long jump in place of muscle power(p<.001). Second, there was a significant difference in the standing vertical jump of muscle power(p<.05). Third, there was a significant difference in the side step of agility(p<.01). As a result, 12 weeks of muscle power and agility training can be expected to have a positive effect on the improvement of agility and agility of elementary school male soccer players, and it is judged that it can provide training basic data for injury prevention and performance improvement.

The Study on the Quantitative Dust Index Using Geostationary Satellite (정지기상위성 자료를 이용한 정량적 황사지수 개발 연구)

  • Kim, Mee-Ja;Kim, Yoonjae;Sohn, Eun-Ha;Kim, Kum-Lan;Ahn, Myung-Hwan
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.267-277
    • /
    • 2008
  • The occurrence and strength of the Asian Dust over the Korea Peninsular have been increased by the expansion of the desert area. For the continuous monitoring of the Asian Dust event, the geostationary satellites provide useful information by detecting the outbreak of the event as well as the long-range transportation of dust. The Infrared Optical Depth Index (IODI) derived from the MTSAT-1R data, indicating a quantitative index of the dust intensity, has been produced in real-time at Korea Meteorological Administration (KMA) since spring of 2007 for the forecast of Asian dust. The data processing algorithm for IODI consists of mainly two steps. The first step is to detect dust area by using brightness temperature difference between two thermal window channels which are influenced with different extinction coefficients by dust. Here we use dynamic threshold values based on the change of surface temperature. In the second step, the IODI is calculated using the ratio between current IR1 brightness temperature and the maximum brightness temperature of the last 10 days which we assume the clear sky. Validation with AOD retrieved from MODIS shows a good agreement over the ocean. Comparison of IODI with the ground based PM10 observation network in Korea shows distinct characteristics depending on the altitude of dust layer estimated from the Lidar data. In the case that the altitude of dust layer is relatively high, the intensity of IODI is larger than that of PM10. On the other hand, when the altitude of dust layer is lower, IODI seems to be relatively small comparing with PM10 measurement.

Evaluation of the efficiency of cleaning method in direct contact membrane distillation of digested livestock wastewater

  • Kim, Sewoon;Park, Ki Young;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.113-123
    • /
    • 2017
  • This study investigated effects of physical and chemical cleaning methods on the initial flux recovery of fouled membrane in membrane distillation process. A laboratory scale direct contact membrane distillation (DCMD) experiment was performed to treat digested livestock wastewater with 3.89 mg/L suspended solids, 874.7 mg/L COD, 543.7 mg/L nitrogen, 15.6 mg/L total phosphorus, and pH of 8.6. A hydrophobic PVDF membrane with an average pore size of $0.22{\mu}m$ and a porosity of 75 % was installed inside a direct contact type membrane distillation module. The temperature difference between feed and permeate side was maintained at $40^{\circ}C$ with the feed and permeate stream velocity of 0.18 m/s. The results showed that the permeate flux decreased from $22.1L{\cdot}m^{-2}{\cdot}hr^{-1}$ to $19.0L{\cdot}m^{-2}{\cdot}hr^{-1}$ after 75 hours of distillation. The fouled membrane was cleaned first by physical flushing and consecutively by chemicals with NaOCl and citric acid. After the physical cleaning the flux was recovered to 92 % as compared with the initial clean water flux of the virgin membrane. Then 94 % of the flux was recovered after cleaning by 2,000 ppm NaOCl for 90 minutes and finally 97 % of flux recovered after 3 % citric acid for 90 minutes. SEM-EDS and FT-IR analysis results presented that the foulants on the membrane surface were removed effectively after each cleaning step. The contact angle measurement showed that the hydrophobicity of the membrane surface was also restored gradually after each cleaning step to reach nearly the same hydrophobicity level as the virgin membrane.

Differences in the Gait Pattern and Muscle Activity of the Lower Extremities during Forward and Backward Walking on Sand

  • Kwon, Chae-Won;Yun, Seong Ho;Kwon, Jung-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.34 no.1
    • /
    • pp.45-50
    • /
    • 2022
  • Purpose: The purpose of this study was to compare the spatiotemporal and kinematic gait parameters and muscle activity of the lower extremities between forward walking on sand (FWS) and backward walking on sand (BWS) in normal adults. Methods: This study was conducted on 13 healthy adults. Subjects performed FWS and BWS and the spatiotemporal and kinematic gait parameters of stride time, stride length, velocity, cadence, step length, stance, swing, double support, and hip range of motion (ROM), knee ROM were measured by a wearable inertial measurement unit system. In addition, the muscle activity of the rectus femoris (RF), biceps femoris (BF), tibialis anterior (TA), and gastrocnemius (GA) was measured. Results: The stride length, stride velocity, cadence, and step length in the BWS were significantly lower than FWS (p<0.05), and stride time was significantly greater (p<0.05). However, there was no significant difference in the ratio of stance, swing, and double support between the two (p>0.05). The kinematic gait parameters, including hip and knee joint range of motion in BWS, were significantly lower than FWS (p<0.05). The muscle activity of the RF in BWS was significantly higher than FWS (p<0.05), but the muscle activity of the BF, TA, GA did not show any significant differences between the two movements (p>0.05). Conclusion: A strategy to increase stability by changing the gait parameters is used in BWS, and this study confirmed that BWS was a safe and effective movement to increase RF muscle activity without straining the joints. Therefore, BWS can be recommended for effective activation of the RF.