• Title/Summary/Keyword: Measurement Robustness

Search Result 253, Processing Time 0.023 seconds

Strategies to Assess Occupational Exposure to Airborne Nanoparticles: Systematic Review and Recommendations

  • Louis Galey;Sabyne Audignon;Patrick Brochard;Maximilien Debia;Aude Lacourt;Pierre Lambert;Olivier Le Bihan;Laurent Martinon;Sebastien Bau;Olivier Witschger;Alain Garrigou
    • Safety and Health at Work
    • /
    • v.14 no.2
    • /
    • pp.163-173
    • /
    • 2023
  • In many industrial sectors, workers are exposed to manufactured or unintentionally emitted airborne nanoparticles (NPs). To develop prevention and enhance knowledge surrounding exposure, it has become crucial to achieve a consensus on how to assess exposure to airborne NPs by inhalation in the workplace. Here, we review the literature presenting recommendations on assessing occupational exposure to NPs. The 23 distinct strategies retained were analyzed in terms of the following points: target NPs, objectives, steps, "measurement strategy" (instruments, physicochemical analysis, and data processing), "contextual information" presented, and "work activity" analysis. The robustness (consistency of information) and practical aspects (detailed methodology) of each strategy were estimated. The objectives and methodological steps varied, as did the measurement techniques. Strategies were essentially based on NPs measurement, but improvements could be made to better account for "contextual information" and "work activity". Based on this review, recommendations for an operational strategy were formulated, integrating the work activity with the measurement to provide a more complete assessment of situations leading to airborne NP exposure. These recommendations can be used with the objective of producing homogeneous exposure data for epidemiological purposes and to help improve prevention strategies.

Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

  • Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1324-1335
    • /
    • 2016
  • This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.

Development of Facial Palsy Grading System with Three Dimensional Image Processing (3차원 영상처리를 이용한 안면마비 평가시스템 개발)

  • Jang, M.;Shin, S.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.2
    • /
    • pp.129-135
    • /
    • 2015
  • The objective grading system for the facial palsy is needed. In this study, the facial palsy grading system was developed with combination of three dimensional image processing and Nottingham scale. The developed system is composed of 4 parts; measurement part, image processing part, computational part, facial palsy evaluation & display part. Two web cam were used to get images. The 8 marker on face were recognized at image processing part. The absolute three dimensional positions of markers were calculated at computational part. Finally, Nottingham scale was calculated and displayed at facial palsy evaluation & display part. The effects of measurement method and position of subject on Nottingham scale were tested. The markers were measured with 2-dimension and 3-dimension. The subject was look at the camera with $0^{\circ}$ and $11^{\circ}$ rotation. The change of Scale was large in the case of $11^{\circ}$ rotation with 2-dimension measurement. So, the developed system with 3-dimension measurement is robust to the orientation change of subject. The developed system showed the robustness of grading error originated from subject posture.

  • PDF

Measurement of nuclear fuel assembly's bow from visual inspection's video record

  • Dusan Plasienka;Jaroslav Knotek;Marcin Kopec;Martina Mala;Jan Blazek
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1485-1494
    • /
    • 2023
  • The bow of the nuclear fuel assembly is a well-known phenomenon. One of the vital criteria during the history of nuclear fuel development has been fuel assembly's mechanical stability. Once present, the fuel assembly bow can lead to safety issues like excessive water gap and power redistribution or even incomplete rod insertion (IRI). The extensive bow can result in assembly handling and loading problems. This is why the fuel assembly's bow is one of the most often controlled geometrical factors during periodic fuel inspections for VVER when compared e.g. to on-site fuel rod gap measurements or other instrumental measurements performed on-site. Our proposed screening method uses existing video records for fuel inspection. We establish video frames normalization and aggregation for the purposes of bow measurement. The whole process is done by digital image processing algorithms which analyze rotations of video frames, extract angles whose source is the fuel set torsion, and reconstruct torsion schema. This approach provides results comparable to the commonly utilized method. We tested this new approach in real operation on 19 fuel assemblies with different campaign numbers and designs, where the average deviation from other methods was less than 2 % on average. Due to the fact, that the method has not yet been validated during full scale measurements of the fuel inspection, the preliminary results stand for that we recommend this method as a complementary part of standard bow measurement procedures to increase measurement robustness, lower time consumption and preserve or increase accuracy. After completed validation it is expected that the proposed method allows standalone fuel assembly bow measurements.

Compensation of Installation Errors in a Laser Vision System and Dimensional Inspection of Automobile Chassis

  • Barkovski Igor Dunin;Samuel G.L.;Yang Seung-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.437-446
    • /
    • 2006
  • Laser vision inspection systems are becoming popular for automated inspection of manufactured components. The performance of such systems can be enhanced by improving accuracy of the hardware and robustness of the software used in the system. This paper presents a new approach for enhancing the capability of a laser vision system by applying hardware compensation and using efficient analysis software. A 3D geometrical model is developed to study and compensate for possible distortions in installation of gantry robot on which the vision system is mounted. Appropriate compensation is applied to the inspection data obtained from the laser vision system based on the parameters in 3D model. The present laser vision system is used for dimensional inspection of car chassis sub frame and lower arm assembly module. An algorithm based on simplex search techniques is used for analyzing the compensated inspection data. The details of 3D model, parameters used for compensation and the measurement data obtained from the system are presented in this paper. The details of search algorithm used for analyzing the measurement data and the results obtained are also presented in the paper. It is observed from the results that, by applying compensation and using appropriate algorithms for analyzing, the error in evaluation of the inspection data can be significantly minimized, thus reducing the risk of rejecting good parts.

The Testbed System for Crisis Management System of the Power Grid Using Satellite Communication Network (위성망을 이용한 파워 그리드 위기관리 시스템의 테스트베드 구현)

  • Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.15 no.1
    • /
    • pp.86-95
    • /
    • 2011
  • In this paper, we propose a testbed system for the crisis management system of the power grid(CMS-PG) using satellite communication network. For the verification of CMS-PG, the proposed system composed of the simulator of satellite communication network and the simulator of phase measurement unit. Proposed satellite communication simulator can evaluate the delay and the robustness of the communication according to the rainfall and the humidity of local site. And the proposed simulator can calculates the voltage stability by hardware implementation using FPGA. Using the proposed testbed system, we adapted its function of crisis management system for the conventional power grid.

The effect of particle size on the determinability of maize composition in reflection mode.

  • MVaradi, Maria;Turza, Sandor
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1129-1129
    • /
    • 2001
  • Maize, in Hungary, is the fodder-plant grown in the biggest quantity. It is not only used as a fodder but other products such as iso-sugar are made from it, too. The quality of the fodder and the produce is largely dependent on the composition of the supplied maize to the processing site. The examination of quality parameters besides conventional methods are investigated and measured by NIR spectroscopy on a routine basis. The investigated parameters are the following: water, total protein, starch and oil content. The accuracy and precision of determining these parameters we, apart from the wet chemical methods, influenced by sample preparation to a great extent. One of the main features of this is the sample particle size and its distribution across the sample. The uneven distribution of particle size negatively influences the measurement accuracy, decreases model robustness and prediction ability. With these in mind the aim of our experiment was to investigate the effect of particle size on the accuracy of maize composition determination using reflection measurement setup. In addition, we tested different spectrum transformations, which are suitable for canceling this effect. In our experiment 47 samples were analyzed with three different mesh sizes (1.5mm, 1.8mm and 2mm). The results of our findings are presented here.

  • PDF

NIR DIODE ARRAY SPECTROMETERS ON AGRICULTURAL HARVEST MACHINES OVERVIEW AND OUTLOOK

  • Rode, Michael
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1172-1172
    • /
    • 2001
  • Compact Near Infrared Diode Array Spectrometers offer new possibilities for on line quality assurance in the agricultural sector. Due to their speed and complete robustness towards temperature fluctuations and mechanical shock Diode Array Spectrometers are suitable for the use on Agricultural Harvest Machines. The growing consumer consciousness of food quality in combination with falling manufacturing prices demands procedures for an effective quality control system. The various conventional types of NIR instruments which have so far been used in laboratories are unsuitable for mobile applications under the rough conditions of field cropping not only because of their slow speed of measurement but also because of their shock sensitive filter wheels and monochromators necessary for fractionating polychromatic light. Another advantage of the on line use is the reduction of the sampling error because of the continuously measurement of the whole product. Considering the large economic importance of the dry matter content on agricultural products it is of particular advantage that water belongs to those constituents which are most easily assessed in the near infrared. While other constituents of economic importance such as starch, oil and protein in grains and seeds have a much lesser effect on NIR signals, their contents can nonetheless be assessed with high analytical precision on freshly harvested grains and seeds. In the last years several applications for on line quality assessment on harvesting machines were developed and tested. The talk will give an overview and outlook on existing and future possibilities of this new field of NIR applications.

  • PDF

Depth Estimation Through the Projection of Rotating Mirror Image unto Mono-camera (회전 평면경 영상의 단일 카메라 투영에 의한 거리 측정)

  • Kim, Hyeong-Seok;Song, Jae-Hong;Han, Hu-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.9
    • /
    • pp.790-797
    • /
    • 2001
  • A simple computer vision technology to measure the middle-ranged depth with a mono camera and a plain mirror is proposed. The proposed system is structured with the rotating mirror in front of the fixed mono camera. In contrast to the previous stereo vision system in which the disparity of the closer object is larger than that of the distant object, the pixel movement caused by the rotating mirror is bigger for the pixels of the distant object in the proposed system. Being inspired by such distinguished feature in the proposed system, the principle of the depth measurement based on the relation of the pixel movement and the distance of object is investigated. Also, the factors to influence the precision of the measurement are analysed. The benefits of the proposed system are low price and less chance of occlusion. The robustness for practical usage is an additional benefit of the proposed vision system.

  • PDF

Design and DSP-based Implementation of Robust Nonlinear Speed Control of Permanent Magnet Synchronous Motor (영구자석 동기전동기의 강인 비선형 속도제어기의 설계 및 DSP에 기반한 구현)

  • 백인철;김경화;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.1-12
    • /
    • 1999
  • A design and DSP-based implementation of robust nonlinear speed control of a permanent magnet synchronous motor(PMSM) under the unknown parameter variations and speed measurement error is presented. The model reference adaptive system(MRAS) based adaptation mechanisms for the estimation of slowly varying parameters are derived using the MIT rule. For the disturbances or quickly varying parameters, a quasilinearized and decoupled model which includes the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Based on this model, a boundary layer integral sliding mode controller to improve the robustness and performance of the nonlinear speed control of a PMSM is designed and compared with the conventional controller which employs Proportional plus Derivative(PD) control. To show the validity of the proposed scheme, simulations and DSP-based experimental works are carried out and compared with the conventional control scheme.