• Title/Summary/Keyword: Measure Detection

Search Result 1,306, Processing Time 0.027 seconds

A New Confidence Measure for Eye Detection Using Pixel Selection (눈 검출에서의 픽셀 선택을 이용한 신뢰 척도)

  • Lee, Yonggeol;Choi, Sang-Il
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.7
    • /
    • pp.291-296
    • /
    • 2015
  • In this paper, we propose a new confidence measure using pixel selection for eye detection and design a hybrid eye detector. For this, we produce sub-images by applying a pixel selection method to the eye patches and construct the BDA(Biased Discriminant Analysis) feature space for measuring the confidence of the eye detection results. For a hybrid eye detector, we select HFED(Haar-like Feature based Eye Detector) and MFED(MCT Feature based Eye Detector), which are complementary to each other, as basic detectors. For a given image, each basic detector conducts eye detection and the confidence of each result is estimated in the BDA feature space by calculating the distances between the produced eye patches and the mean of positive samples in the training set. Then, the result with higher confidence is adopted as the final eye detection result and is used to the face alignment process for face recognition. The experimental results for various face databases show that the proposed method performs more accurate eye detection and consequently results in better face recognition performance compared with other methods.

Global Sequence Homology Detection Using Word Conservation Probability

  • Yang, Jae-Seong;Kim, Dae-Kyum;Kim, Jin-Ho;Kim, Sang-Uk
    • Interdisciplinary Bio Central
    • /
    • v.3 no.4
    • /
    • pp.14.1-14.9
    • /
    • 2011
  • Protein homology detection is an important issue in comparative genomics. Because of the exponential growth of sequence databases, fast and efficient homology detection tools are urgently needed. Currently, for homology detection, sequence comparison methods using local alignment such as BLAST are generally used as they give a reasonable measure for sequence similarity. However, these methods have drawbacks in offering overall sequence similarity, especially in dealing with eukaryotic genomes that often contain many insertions and duplications on sequences. Also these methods do not provide the explicit models for speciation, thus it is difficult to interpret their similarity measure into homology detection. Here, we present a novel method based on Word Conservation Score (WCS) to address the current limitations of homology detection. Instead of counting each amino acid, we adopted the concept of 'Word' to compare sequences. WCS measures overall sequence similarity by comparing word contents, which is much faster than BLAST comparisons. Furthermore, evolutionary distance between homologous sequences could be measured by WCS. Therefore, we expect that sequence comparison with WCS is useful for the multiple-species-comparisons of large genomes. In the performance comparisons on protein structural classifications, our method showed a considerable improvement over BLAST. Our method found bigger micro-syntenic blocks which consist of orthologs with conserved gene order. By testing on various datasets, we showed that WCS gives faster and better overall similarity measure compared to BLAST.

Edge Detection By Fusion Using Local Information of Edges

  • Vlachos, Ioannis K.;Sergiadis, George D.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.403-406
    • /
    • 2003
  • This paper presents a robust algorithm for edge detection based on fuzzy fusion, using a novel local edge information measure based on Renyi's a-order entropy. The calculation of the proposed measure is carried out using a parametric classification scheme based on local statistics. By suitably tuning its parameters, the local edge information measure is capable of extracting different types of edges, while exhibiting high immunity to noise. The notions of fuzzy measures and the Choquet fuzzy integral are applied to combine the different sources of information obtained using the local edge information measure with different sets of parameters. The effectiveness and the robustness of the new method are demonstrated by applying our algorithm to various synthetic computer-generated and real-world images.

  • PDF

Pupil Detection using PCA and Hough Transform

  • Jang, Kyung-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.21-27
    • /
    • 2017
  • In this paper, we propose a pupil detection method using PCA(principal component analysis) and Hough transform. To reduce error to detect eyebrows as pupil, eyebrows are detected using projection function in eye region and eye region is set to not include the eyebrows. In the eye region, pupil candidates are detected using rank order filter. False candidates are removed by using symmetry. The pupil candidates are grouped into pairs based on geometric constraints. A similarity measure is obtained for two eye of each pair using PCA and hough transform, we select a pair with the smallest similarity measure as final two pupils. The experiments have been performed for 1000 images of the BioID face database. The results show that it achieves the higher detection rate than existing method.

Detection and Classification of Bearing Flaking Defects by Using Kullback Discrimination Information (KDI)

  • Kim, Tae-Gu;Takabumi Fukuda;Hisaji Shimizu
    • International Journal of Safety
    • /
    • v.1 no.1
    • /
    • pp.28-35
    • /
    • 2002
  • Kullback Discrimination Information (KDI) is one of the pattern recognition methods. KDI defined as a measure of the mutual dissimilarity computed between two time series was studied for detection and classification of bearing flaking on outer-race and inner-races. To model the damages, the bearings in normal condition, outer-race flaking condition and inner-races flaking condition were provided. The vibration sensor was attached by the bearing housing. This produced the total 25 pieces of data each condition, and we chose the standard data and measure of distance between standard and tested data. It is difficult to detect the flaking because similar pulses come out when balls pass the defection point. The detection and classification method for inner and outer races are defected by KDI and nearest neighbor classification rule is proposed and its high performance is also shown.

Staff-line and Measure Detection using a Convolutional Neural Network for Handwritten Optical Music Recognition (손사보 악보의 광학음악인식을 위한 CNN 기반의 보표 및 마디 인식)

  • Park, Jong-Won;Kim, Dong-Sam;Kim, Jun-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.7
    • /
    • pp.1098-1101
    • /
    • 2022
  • With the development of computer music notation programs, when drawing sheet music, it is often drawn using a computer. However, there are still many use of hand-written notations for educational purposes or to quickly draw sheet music such as listening and dictating. In previous studies, OMR focused on recognizing the printed music sheet made by music notation program. the result of handwritten OMR with camera is poor because different people have different writing methods, and lens distortion. In this study, as a pre-processing process for recognizing handwritten music sheet, we propose a method for recognizing a staff using linear regression and a method for recognizing a bar using CNN. F1 scores of staff recognition and barline detection are 99.09% and 95.48%, respectively. This methodologies are expected to contribute to improving the accuracy of handwriting.

A New Measure for Monitoring Intraoperative Somatosensory Evoked Potentials

  • Jin, Seung-Hyun;Chung, Chun Kee;Kim, Jeong Eun;Choi, Young Doo
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.6
    • /
    • pp.455-462
    • /
    • 2014
  • Objective : To propose a new measure for effective monitoring of intraoperative somatosensory evoked potentials (SEP) and to validate the feasibility of this measure for evoked potentials (EP) and single trials with a retrospective data analysis study. Methods : The proposed new measure (hereafter, a slope-measure) was defined as the relative slope of the amplitude and latency at each EP peak compared to the baseline value, which is sensitive to the change in the amplitude and latency simultaneously. We used the slope-measure for EP and single trials and compared the significant change detection time with that of the conventional peak-to-peak method. When applied to single trials, each single trial signal was processed with optimal filters before using the slope-measure. In this retrospective data analysis, 7 patients who underwent cerebral aneurysm clipping surgery for unruptured aneurysm middle cerebral artery (MCA) bifurcation were included. Results : We found that this simple slope-measure has a detection time that is as early or earlier than that of the conventional method; furthermore, using the slope-measure in optimally filtered single trials provides warning signs earlier than that of the conventional method during MCA clipping surgery. Conclusion : Our results have confirmed the feasibility of the slope-measure for intraoperative SEP monitoring. This is a novel study that provides a useful measure for either EP or single trials in intraoperative SEP monitoring.

A Lightweight Real-Time Small IR Target Detection Algorithm to Reduce Scale-Invariant Computational Overhead (스케일 불변적인 연산량 감소를 위한 경량 실시간 소형 적외선 표적 검출 알고리즘)

  • Ban, Jong-Hee;Yoo, Joonhyuk
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.4
    • /
    • pp.231-238
    • /
    • 2017
  • Detecting small infrared targets from the low-SCR images at a long distance is very hard. The previous Local Contrast Method (LCM) algorithm based on the human visual system shows a superior performance of detecting small targets by a background suppression technique through local contrast measure. However, its slow processing speed due to the heavy multi-scale processing overhead is not suitable to a variety of real-time applications. This paper presents a lightweight real-time small target detection algorithm, called by the Improved Selective Local Contrast Method (ISLCM), to reduce the scale-invariant computational overhead. The proposed ISLCM applies the improved local contrast measure to the predicted selective region so that it may have a comparable detection performance as the previous LCM while guaranteeing low scale-invariant computational load by exploiting both adaptive scale estimation and small target feature feasibility. Experimental results show that the proposed algorithm can reduce its computational overhead considerably while maintaining its detection performance compared with the previous LCM.

B-Corr Model for Bot Group Activity Detection Based on Network Flows Traffic Analysis

  • Hostiadi, Dandy Pramana;Wibisono, Waskitho;Ahmad, Tohari
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.4176-4197
    • /
    • 2020
  • Botnet is a type of dangerous malware. Botnet attack with a collection of bots attacking a similar target and activity pattern is called bot group activities. The detection of bot group activities using intrusion detection models can only detect single bot activities but cannot detect bots' behavioral relation on bot group attack. Detection of bot group activities could help network administrators isolate an activity or access a bot group attacks and determine the relations between bots that can measure the correlation. This paper proposed a new model to measure the similarity between bot activities using the intersections-probability concept to define bot group activities called as B-Corr Model. The B-Corr model consisted of several stages, such as extraction feature from bot activity flows, measurement of intersections between bots, and similarity value production. B-Corr model categorizes similar bots with a similar target to specify bot group activities. To achieve a more comprehensive view, the B-Corr model visualizes the similarity values between bots in the form of a similar bot graph. Furthermore, extensive experiments have been conducted using real botnet datasets with high detection accuracy in various scenarios.

Community Detection using Closeness Similarity based on Common Neighbor Node Clustering Entropy

  • Jiang, Wanchang;Zhang, Xiaoxi;Zhu, Weihua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.8
    • /
    • pp.2587-2605
    • /
    • 2022
  • In order to efficiently detect community structure in complex networks, community detection algorithms can be designed from the perspective of node similarity. However, the appropriate parameters should be chosen to achieve community division, furthermore, these existing algorithms based on the similarity of common neighbors have low discrimination between node pairs. To solve the above problems, a noval community detection algorithm using closeness similarity based on common neighbor node clustering entropy is proposed, shorted as CSCDA. Firstly, to improve detection accuracy, common neighbors and clustering coefficient are combined in the form of entropy, then a new closeness similarity measure is proposed. Through the designed similarity measure, the closeness similar node set of each node can be further accurately identified. Secondly, to reduce the randomness of the community detection result, based on the closeness similar node set, the node leadership is used to determine the most closeness similar first-order neighbor node for merging to create the initial communities. Thirdly, for the difficult problem of parameter selection in existing algorithms, the merging of two levels is used to iteratively detect the final communities with the idea of modularity optimization. Finally, experiments show that the normalized mutual information values are increased by an average of 8.06% and 5.94% on two scales of synthetic networks and real-world networks with real communities, and modularity is increased by an average of 0.80% on the real-world networks without real communities.