• Title/Summary/Keyword: Means-Efficiency

Search Result 1,774, Processing Time 0.024 seconds

Analysis of Powertrain Characteristics for Output Split Type Plug-in Hybrid Electric Vehicle (출력분기 기반 플러그인 하이브리드 전기자동차의 동력전달 시스템 특성 분석)

  • Kim, Jeongmin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.1
    • /
    • pp.112-121
    • /
    • 2015
  • In this paper, powertrain of output split type plug-in hybrid electric vehicle is analyzed for the operation range of speed, torque, and power. First, it is assumed that the efficiency of motor is 100%. And, the speed and torque equations are derived based on the lever analogy. With the above equations, the simulations are performed for the powertrain of output split type plug-in hybrid electric vehicle. From the simulation results, it is found that the output torques of EV1 and series modes are larger than the EV2 and power split modes' ones. It means the EV1 and series modes can be used for the rapid acceleration. But the EV1 and series modes can be used only the velocity of under the 120 km/h. It is because the motor reaches its maximum speed when the velocity is over the 120 km/h for the EV1 and series modes. When the engine is turned on, the engine power is transmitted through the two motors. But, the power split mode shows the power split of engine at the output shaft, and it has the point of zero motor power. Thus, the transmission efficiency of the power split mode can be higher than the series mode's one, it the motor efficiency is considered.

Study on the Efficiency in Silocin Solar Cell (실리콘 태양전지 셀 효율에 관한 연구)

  • Hyun, Il-Seoup;Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2565-2569
    • /
    • 2010
  • It was researched the correlation between the Solar cell and the effect of texturing. The samples were textured by using the IPA mixed solution with $HNO_3$, KOH and NaOH. The samples were analyzed by the X-ray Diffraction pattern and Fourier Transform Infrared spectroscopy. The FTIR spectra in the range of 950~1350 $cm^{-1}$ was related to the peak's formation as the bonding structure. The split of peaks means that the inter reaction between the molecular did not activate and then increased the efficiency because of low reflectance as shown the cell treated in NaOH mixed solution.

Application of Geometry-Efficiency Variation Technique to Activity Measurement of $^{204}T1$ for 3-PM Liquid Scintillation Counting

  • Lee Hwa Yong;Seo Ji Suk;Kwak Ji Yeon;Hwang Han-Yull;Lee K. B.;Lee Jong Man;Park Tae Soon
    • Nuclear Engineering and Technology
    • /
    • v.36 no.2
    • /
    • pp.121-126
    • /
    • 2004
  • 3-PM liquid scintillation counting using the geometry-efficiency variation technique has been applied to the activity measurement of $^{204}T1$, which decays to $^{204}Hg\;and\;^{204}Pb\;by\;{\beta}^-$ and E.C., respectively. The TDCR values K have been derived over a wide range, 0.78 < K < 0.97, by displacing the detectors up to 50 mm away from an unquenched liquid scintillation sample $^{204}Tl$. The derived plots of the logic sums of double coincidences $N_D(K)$ very K vary linearly in the observed regions. The fractions of losses due to electron capture decay have been taken into account by employing a PENELOPE Monte Carlo simulation. The calibrated activity is 102.3 kBq at a reference date of July 1st, 2002 (UT) with a combined uncertainty of $0.63\%$. This is consistent with the value determined by means of the CIEMAT/NIST method at KRISS.

A Study on a Resorption Beat Pump Using Methanol-Glycerine (메탄올-글리세린을 이용한 재흡수 열펌프의 열역학적 모사 연구)

  • Min, Byong-Hun
    • Journal of Energy Engineering
    • /
    • v.15 no.4 s.48
    • /
    • pp.284-290
    • /
    • 2006
  • The improvement of energy recovery is mandatory to decrease consumption of fossil fuels and to minimize negative impacts on the environment which originates from large cooling and heating demand. The absorption heat pump technology has a large potential for energy saving in this respect. Absorption heat pump is a means to upgrade waste heat without addition of extra thermal energy. In this study, resorption heat pump for energy recovery has been investigated using methanol-glycerine. The simulated calculation of theoretical thermal efficiency was performed based on the thermodynamic properties of the working fluid over various operating conditions. The thermal efficiency of higher than 0.4 was obtained by raising industrial waste heat, $70{\sim}80^{\circ}C$, by $40^{\circ}C$ in this system.

Implementation and Effectiveness of Smart Equipment Engineering System (스마트 설비관리시스템 구축 및 효과분석)

  • Sim, Hyun-Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2017
  • EES System support to maximize equipment efficiency by providing real-time information of main equipment which has a significant effect on product quality and productivity, and to prevent equipment failure by detecting equipment abnormality in advance. Smart Equipment Engineering System(S-EES) integrates the activities performed at equipment that are the core of production activities and manages them by system so as to maximize the efficiency of equipment and raise the quality level of products to one level. In other words, when the product is put into the equipment, the recipe is downloaded through the RMS, the recipe is set to the optimal condition through R2R(process control), and the system detects and controls the abnormality of the equipment during operation through the FDC function in real time it means. In this way, we are working with the suitable recipe that matches the lot of product, detecting the abnormality of the equipment during operation, preventing the product from being defective, and establishing a system to maximize the efficiency through real-time equipment management. In this study, we review the present status and problems of equipment management in actual production lines, collect the requirements of the manufacturing line for the PCB line, design and develop the system, The measurement model was studied.

  • PDF

Roles of polypropylene beads and pH in hybrid water treatment of carbon fiber membrane and PP beads with water back-flushing

  • Song, Sungwon;Park, Yungsik;Park, Jin Yong
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.155-163
    • /
    • 2019
  • The roles of polypropylene (PP) beads and pH on membrane fouling and treatment efficiency were investigated in a hybrid advanced water treatment process of tubular carbon fiber membranes (ultrafiltration (UF) or microfiltration (MF)) and PP beads. The synthetic feed including humic acid and kaolin flowed inside the membrane, and the permeated contacted the PP beads fluidized in the space between the membrane and the module with UV irradiation and periodic water back-flushing. In the hybrid process of UF ($0.05{\mu}m$) and PP beads, final resistance of membrane fouling ($R_f$) after 180 min increased as PP beads increased. The turbidity treatment efficiency was the maximum at 30 g/L; however, that of dissolved organic matters (DOM) showed the highest at PP beads 50 g/L. The $R_f$ strengthened as pH of feed increased. It means that the membrane fouling could be inhibited at low alkali condition. The treatment efficiency of turbidity was almost constant independent of pH; however, that of DOM showed the maximum at pH 5. For MF ($0.1{\mu}m$), the final $R_f$ was the minimum at PP beads 40 g/L. The treatment efficiencies of turbidity and DOM were the maximum at PP beads 10 g/L.

Improving Tax Audit Efficiency (세무조사 효율성 제고 방안)

  • Lee, Kwang-Sook;Ki, Eun-Sun
    • Asia-Pacific Journal of Business
    • /
    • v.11 no.1
    • /
    • pp.115-143
    • /
    • 2020
  • Purpose - The purpose of this study is to expand the taxpayer's rights protections, which are covered in the previous studies, and to suggest ways to increase tax inspection efficiency as a way to induce fidelity reporting under the final tax return system and to lower tax compliance costs. Design/methodology/approach - The tax audit is a necessary system for the taxpayer to induce self-reporting in a sincere manner, but it is necessary to harmonize the realization of fair taxation and the rights of taxpayers because it is likely to infringe taxpayer rights in the process. Research implications or Originality - The purpose of this study is as follows. First, the government will seek ways to improve tax investigations to strengthen the protection of taxpayers' rights by increasing the fairness and procedural transparency of the current tax investigation system, as pointed out in the National Tax Administration Reform T / F. Second, we will consider ways to enhance the effectiveness of tax audit as a means of inducing faithful tax in Korea's tax system, which assumes sincere taxpayers.

Coil Design Scheme using Single-Turn FEM Simulation for Efficiency Optimization of Inductive Power Transfer System (단일 권선 FEM 시뮬레이션을 통한 자기유도형 무선전력전송 코일의 효율 최적화 설계)

  • Seung-Ha, Ryu;Chanh-Tin, Truong;Sung-Jin, Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.6
    • /
    • pp.471-480
    • /
    • 2022
  • Inductive power transfer (IPT) is an attractive power transmission solution that is already used in many applications. In the IPT system, optimal coil design is essential to achieve high power efficiency, but the effective design method is yet to be investigated. The inductance formula and finite element method (FEM) are popular means to link the coil geometric parameters and circuit parameters; however, the former lacks generality and accuracy, and the latter consumes much computation time. This study proposes a novel coil design method to achieve speed and generality without much loss of accuracy. By introducing one-turn permeance simulation in each FEM phase combined with curve fitting and optimization by MATLAB in the efficiency calculation phase, the iteration number of FEM can be considerably reduced, and the generality can be retained. The proposed method is verified through a 100 W IPT system experiment.

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

The Efficiency of Steel Brace Strengthening of School Buildings according to the Failure Mode of Columns (기둥 파괴모드에 따른 학교 건물 철골 가새 보강의 효율성)

  • Lee, Hee Seop;Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.101-109
    • /
    • 2023
  • Steel brace strengthening is the most popular seismic rehabilitation method for school buildings. This is because the design can be conducted by using relatively easy nonlinear pushover analysis and standard modeling in codes. An issue with steel brace strengthening is that the reinforced building should behave elastically to satisfy performance objectives. For this, the size of steel braces should be highly increased, which results in excessive strengthening cost by force concentration on existing members and foundations due to the considerable stiffness and strength of the steel braces. The main reason may be the brittle failure mode of columns, so this study investigated the relationship between the efficiency of steel brace strengthening and column failure modes. The result showed that the efficiency is highly dependent on the shear capacity ratio of columns and structural analysis methods. School buildings reinforced by steel braces do not need to behave elastically when the shear capacity ratio is low, and pushover analysis is used, which means reducing steel material is possible.