• Title/Summary/Keyword: Means of Using

Search Result 12,023, Processing Time 0.047 seconds

A Fine Dust Measurement Technique using K-means and Sobel-mask Edge Detection Method (K-means와 Sobel-mask 윤곽선 검출 기법을 이용한 미세먼지 측정 방법)

  • Lee, Won-Hyeung;Seo, Ju-Wan;Kim, Ki-Yeon;Lin, Chi-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 2022
  • In this paper, we propose a method of measuring Fine dust in images using K-means and Sobel-mask based edge detection techniques using CCTV. The proposed algorithm collects images using a CCTV camera and designates an image range through a region of interest. When clustering is completed by applying the K-means algorithm, outline is detected through Sobel-mask, edge strength is measured, and the concentration of fine dust is determined based on the measured data. The proposed method extracts the contour of the mountain range using the characteristics of Sobel-mask, which has an advantage in diagonal measurement, and shows the difference in detection according to the concentration of fine dust as an experimental result.

Fast K-Means Clustering Algorithm using Prediction Data (예측 데이터를 이용한 빠른 K-Means 알고리즘)

  • Jee, Tae-Chang;Lee, Hyun-Jin;Lee, Yill-Byung
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.1
    • /
    • pp.106-114
    • /
    • 2009
  • In this paper we proposed a fast method for a K-Means Clustering algorithm. The main characteristic of this method is that it uses precalculated data which possibility of change is high in order to speed up the algorithm. When calculating distance to cluster centre at each stage to assign nearest prototype in the clustering algorithm, it could reduce overall computation time by selecting only those data with possibility of change in cluster is high. Calculation time is reduced by using the distance information produced by K-Means algorithm when computing expected input data whose cluster may change, and by using such distance information the algorithm could be less affected by the number of dimensions. The proposed method was compared with original K-Means method - Lloyd's and the improved method KMHybrid. We show that our proposed method significantly outperforms in computation speed than Lloyd's and KMHybrid when using large size data which has large amount of data, great many dimensions and large number of clusters.

Cloudy Area Detection in Satellite Image using K-Means & GHA (K-Means 와 GHA를 이용한 위성영상 구름영역 검출)

  • 서석배;김종우;최해진
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.405-408
    • /
    • 2003
  • This paper proposes a new algorithm for cloudy area detection using K-Means and GHA (Generalized Hebbian Algorithm). K-Means is one of simple classification algorithm, and GHA is unsupervised neural network for data compression and pattern classification. Proposed algorithm is based on block based image processing that size is l6$\times$l6. Experimental results shows good performance of cloudy area detection except blur cloudy areas.

  • PDF

Charging of Sensor Network using Multiple Mobile Robots (다중 이동 로봇을 이용한 센서 네트워크의 충전)

  • Moon, Chanwoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.345-350
    • /
    • 2021
  • The maintenance of sensor networks, installed in a wide area has been an issue for a long time. In order to solve this problem, studies to supply energy to a sensor network using a robot has been carried out by several researchers. In this study, for a sensor network consisting of power nodes supplied with energy by multiple robots and sensor nodes around them, we propose a method of allocating a work area using a modified k-means algorithm so that the robots move the minimum distance. Through the simulation study using the energy transfer rate of the robot as a variable, it is shown that nodes of each allocated area can maintain survival, and the validity of the proposed modified k-means algorithm is verified.

Machine-Part Grouping in Cellular Manufacturing Systems Using a Self-Organizing Neural Networks and K-Means Algorithm (셀 생산방식에서 자기조직화 신경망과 K-Means 알고리즘을 이용한 기계-부품 그룹형성)

  • 이상섭;이종섭;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.61
    • /
    • pp.137-146
    • /
    • 2000
  • One of the problems faced in implementing cellular manufacturing systems is machine-part group formation. This paper proposes machine-part grouping algorithms based on Self-Organizing Map(SOM) neural networks and K-Means algorithm in cellular manufacturing systems. Although the SOM spreads out input vectors to output vectors in the order of similarity, it does not always find the optimal solution. We rearrange the input vectors using SOM and determine the number of groups. In order to find the number of groups and grouping efficacy, we iterate K-Means algorithm changing k until we cannot obtain better solution. The results of using the proposed approach are compared to the best solutions reported in literature. The computational results show that the proposed approach provides a powerful means of solving the machine-part grouping problem. The proposed algorithm Is applied by simple calculation, so it can be for designer to change production constraints.

  • PDF

K-means Clustering using a Center Of Gravity for grid-based sample

  • Park, Hee-Chang;Lee, Sun-Myung
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.51-60
    • /
    • 2004
  • K-means clustering is an iterative algorithm in which items are moved among sets of clusters until the desired set is reached. K-means clustering has been widely used in many applications, such as market research, pattern analysis or recognition, image processing, etc. It can identify dense and sparse regions among data attributes or object attributes. But k-means algorithm requires many hours to get k clusters that we want, because it is more primitive, explorative. In this paper we propose a new method of k-means clustering using a center of gravity for grid-based sample. It is more fast than any traditional clustering method and maintains its accuracy.

  • PDF

Invariant Range Image Multi-Pose Face Recognition Using Fuzzy c-Means

  • Phokharatkul, Pisit;Pansang, Seri
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1244-1248
    • /
    • 2005
  • In this paper, we propose fuzzy c-means (FCM) to solve recognition errors in invariant range image, multi-pose face recognition. Scale, center and pose error problems were solved using geometric transformation. Range image face data was digitized into range image data by using the laser range finder that does not depend on the ambient light source. Then, the digitized range image face data is used as a model to generate multi-pose data. Each pose data size was reduced by linear reduction into the database. The reduced range image face data was transformed to the gradient face model for facial feature image extraction and also for matching using the fuzzy membership adjusted by fuzzy c-means. The proposed method was tested using facial range images from 40 people with normal facial expressions. The output of the detection and recognition system has to be accurate to about 93 percent. Simultaneously, the system must be robust enough to overcome typical image-acquisition problems such as noise, vertical rotated face and range resolution.

  • PDF

Selection of Cluster Hierarchy Depth and Initial Centroids in Hierarchical Clustering using K-Means Algorithm (K-Means 알고리즘을 이용한 계층적 클러스터링에서 클러스터 계층 깊이와 초기값 선정)

  • Lee, Shin-Won;An, Dong-Un;Chong, Sung-Jong
    • Journal of the Korean Society for information Management
    • /
    • v.21 no.4 s.54
    • /
    • pp.173-185
    • /
    • 2004
  • Fast and high-quality document clustering algorithms play an important role in providing data exploration by organizing large amounts of information into a small number of meaningful clusters. Many papers have shown that the hierarchical clustering method takes good-performance, but is limited because of its quadratic time complexity. In contrast, with a large number of variables, K-means has a time complexity that is linear in the number of documents, but is thought to produce inferior clusters. In this paper, Condor system using K-Means algorithm Compares with regular method that the initial centroids have been established in advance, our method performance has been improved a lot.

User's Individuality Preference Recommendation System using Improved k-means Algorithm (개선된 k-means 알고리즘을 적용한 사용자 특성 선호도 추천 시스템)

  • Ahn, Chan-Shik;Oh, Sang-Yeob
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.8
    • /
    • pp.141-148
    • /
    • 2010
  • In mobile terminal recommend service system has general information restrictive recommend that individuality considering to user's information find and recommend. Also it has difficult of accurate information recommend bad points user's not offer individuality information preference recommend service. Therefore this paper is propose user's information individuality preference considering by user's individuality preference recommendation system using improved k-means algorithm. Propose method is correlation coefficients using user's information individuality preference when user's individuality preference recommendation using improved k-means algorithm. Restrictive information recommend to fix a problem, information of restrictive general recommend that user's information individuality preference offer to accurate information recommend. Performance experiment is existing service system as compared to evaluating the effectiveness of precision and recall, performance experiment result is appear to precision 85%, recall 68%.

An Implementation of K-Means Algorithm Improving Cluster Centroids Decision Methodologies (클러스터 중심 결정 방법을 개선한 K-Means 알고리즘의 구현)

  • Lee Shin-Won;Oh HyungJin;An Dong-Un;Jeong Seong-Jong
    • The KIPS Transactions:PartB
    • /
    • v.11B no.7 s.96
    • /
    • pp.867-874
    • /
    • 2004
  • K-Means algorithm is a non-hierarchical (plat) and reassignment techniques and iterates algorithm steps on the basis of K cluster centroids until the clustering results converge into K clusters. In its nature, K-Means algorithm has characteristics which make different results depending on the initial and new centroids. In this paper, we propose the modified K-Means algorithm which improves the initial and new centroids decision methodologies. By evaluating the performance of two algorithms using the 16 weighting scheme of SMART system, the modified algorithm showed $20{\%}$ better results on recall and F-measure than those of K-Means algorithm, and the document clustering results are quite improved.