• Title/Summary/Keyword: Means

Search Result 32,017, Processing Time 0.053 seconds

Effect of the Hose Slurry Spreader on Oder Reduction (호스지표살포기의 악취감소효과 분석)

  • 오인환;김기덕
    • Journal of Animal Environmental Science
    • /
    • v.7 no.2
    • /
    • pp.119-126
    • /
    • 2001
  • For the odor test, it was chosen the conventional spreader, the hose spreader, and its combination with disk harrow and spring harrow as a slurry spreader. By the odor tester (Kalmor-$\sum$) with dairy slurry, the conventional spreader has the average $\sum$ value of 270, which means that one fells substantial odor and torment. In the cases of hose spreader and its combination with disk harrow, $\sum$ value was 217 and 182 respectively, which means a normal person does not smell any odor. Spreading the swine slurry with a conventional spreader shows $\sum$ value of 440, which means one feels unpleasant. The hose spreader shows $\sum$ value of 258, which lies in the limit one feels some odor and torment. Its combination with disk harrow has $\sum$ value 184, which means that a normal person can not smell any more. For the conventional spreader, the odor intensity indices from air dilution sensual test and 3 point odor bag as a sensual test were 66.9 and 35.4 respectively. On the other hand, the indices were 9.65 and 11.10 by hose spreader and its combination with disk harrow, which were lower than that of the regulation for industry. Therefore, the developed hose spreader showed an excellent effect on decreasing odor. The correlation between the results from odor tester and 3 point odor bag has shown 0.997 by swine slurry.

  • PDF

Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means (비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약)

  • Park, Sun;Lee, Ju-Hong
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.4
    • /
    • pp.255-264
    • /
    • 2008
  • This paper proposes a novel method using K-means and Non-negative matrix factorization (NMF) for topic -based multi-document summarization. NMF decomposes weighted term by sentence matrix into two sparse non-negative matrices: semantic feature matrix and semantic variable matrix. Obtained semantic features are comprehensible intuitively. Weighted similarity between topic and semantic features can prevent meaningless sentences that are similar to a topic from being selected. K-means clustering removes noises from sentences so that biased semantics of documents are not reflected to summaries. Besides, coherence of document summaries can be enhanced by arranging selected sentences in the order of their ranks. The experimental results show that the proposed method achieves better performance than other methods.

K-means based Clustering Method with a Fixed Number of Cluster Members

  • Yi, Faliu;Moon, Inkyu
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.10
    • /
    • pp.1160-1170
    • /
    • 2014
  • Clustering methods are very useful in many fields such as data mining, classification, and object recognition. Both the supervised and unsupervised grouping approaches can classify a series of sample data with a predefined or automatically assigned cluster number. However, there is no constraint on the number of elements for each cluster. Numbers of cluster members for each cluster obtained from clustering schemes are usually random. Thus, some clusters possess a large number of elements whereas others only have a few members. In some areas such as logistics management, a fixed number of members are preferred for each cluster or logistic center. Consequently, it is necessary to design a clustering method that can automatically adjust the number of group elements. In this paper, a k-means based clustering method with a fixed number of cluster members is proposed. In the proposed method, first, the data samples are clustered using the k-means algorithm. Then, the number of group elements is adjusted by employing a greedy strategy. Experimental results demonstrate that the proposed clustering scheme can classify data samples efficiently for a fixed number of cluster members.

Study on Scaling Exponent for Classification of Regions using Scaling Property (스케일 성질을 이용한 군집 지역에서의 스케일 인자에 대한 연구)

  • Jung, Younghun;Kim, Sunghun;Ahn, Hyunjun;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.504-504
    • /
    • 2015
  • 수공구조물을 설계하기 위해서는 설계수문량을 빈도해석을 통해 산정할 수 있다. 빈도해석 중 지점빈도해석을 보완한 지역빈도해석을 적용하기 위해서는 군집분석을 통한 지역구분이 무엇보다 중요하다. 또한 스케일 성질(scaling property)은 강우의 시 공간적 특성을 지속기간별 관측된 강우자료를 이용하여 재현기간에 대한 지속기간의 함수로 강우의 IDF곡선을 제시할 수 있는 방법이다. 따라서 스케일 성질을 통해 군집된 지역에서의 강우자료에 적용하여 스케일 인자(scaling exponent)를 추정한 후 수문학적 동질성을 통계적 특성으로 설명하고자 한다. 본 연구를 수행하기에 앞서 군집 분석은 4개의 군집방법(평균연결법, Ward방법, Two-Step방법, K-means방법)을 적용하였고, 한강유역에 위치한 104개의 강우지점은 4개의 지역으로 구분하는 것이 적절하다고 판단되어 비계층적 방법인 k-means방법을 이용하여 지역을 구분하였다. 본 연구에서는 군집된 결과를 바탕으로 4개의 지역으로 구분된 지역에 포함된 강우지점을 대상으로 스케일 인자를 추정하고 수문학적 동질성을 통계적 방법으로 제시하고자 한다.

  • PDF

Quantization of Lumbar Muscle using FCM Algorithm (FCM 알고리즘을 이용한 요부 근육 양자화)

  • Kim, Kwang-Baek
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.27-31
    • /
    • 2013
  • In this paper, we propose a new quantization method using fuzzy C-means clustering(FCM) for lumbar ultrasound image recognition. Unlike usual histogram based quantization, our method first classifies regions into 10 clusters and sorts them by the central value of each cluster. Those clusters are represented with different colors. This method is efficient to handle lumbar ultrasound image since in this part of human body, the brightness values are distributed to doubly skewed histogram in general thus the usual histogram based quantization is not strong to extract different areas. Experiment conducted with 15 real lumbar images verified the efficacy of proposed method.

A Study on Identification of the Heat Vulnerability Area - Case Study in Chungcheongnamdo - (폭염 취약지역 도출에 관한 연구 - 충청남도를 대상으로 -)

  • Lee, Gyeongjin;Cha, Jungwoo
    • Journal of Korean Society of Rural Planning
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2019
  • This study is to identify the heat vulnerability area as represented by heat risk factors which could be attributable to heat-related deaths. The heat risk factors were temperature, Older Adults(OA), Economic Disadvantage(ED), Accessibility of Medical Services(AMS), The population Single Person Households(SPH). The factors are follow as; the temperature means to the number of days for decades average daily maximum temperature above $31^{\circ}C$, the Older Adults means to population ages 65 and above, furthermore, the Economic Disadvantage means to the population of Basic Livelihood Security Recipients(BLSR), the Accessibility of Medical Services(AMS) means to 5 minutes away from emergency medical services. The results of the analysis are showed that the top-level of temperature vulnerability areas is Dong, the top-level of vulnerability OA areas is Eup, the top-level of AMS vulnerability is Eup. Moreover, the top-level of vulnerability ED area appears in the Eup and Dong. The result of analysing relative importance to each element, most of the Eup were vulnerable to heat. Since, there are many vulnerable groups such as Economic Disadvantage, Older Adults in the Eup. We can be figured out estimated the number of heat-related deaths was high in the Eup and Dong by the data of emergency activation in the Chungcheongnam-do Fire Department. Therefore, the result of this study could be reasonable.

Improved TI-FCM Clustering Algorithm in Big Data (빅데이터에서 개선된 TI-FCM 클러스터링 알고리즘)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.419-424
    • /
    • 2019
  • The FCM algorithm finds the optimal solution through iterative optimization technique. In particular, there is a difference in execution time depending on the initial center of clustering, the location of noise, the location and number of crowded densities. However, this method gradually updates the center point, and the center of the initial cluster is shifted to one side. In this paper, we propose a TI-FCM(Triangular Inequality-Fuzzy C-Means) clustering algorithm that determines the cluster center density by maximizing the distance between clusters using triangular inequality. The proposed method is an effective method to converge to real clusters compared to FCM even in large data sets. Experiments show that execution time is reduced compared to existing FCM.

A Novel Image Segmentation Method Based on Improved Intuitionistic Fuzzy C-Means Clustering Algorithm

  • Kong, Jun;Hou, Jian;Jiang, Min;Sun, Jinhua
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.6
    • /
    • pp.3121-3143
    • /
    • 2019
  • Segmentation plays an important role in the field of image processing and computer vision. Intuitionistic fuzzy C-means (IFCM) clustering algorithm emerged as an effective technique for image segmentation in recent years. However, standard fuzzy C-means (FCM) and IFCM algorithms are sensitive to noise and initial cluster centers, and they ignore the spatial relationship of pixels. In view of these shortcomings, an improved algorithm based on IFCM is proposed in this paper. Firstly, we propose a modified non-membership function to generate intuitionistic fuzzy set and a method of determining initial clustering centers based on grayscale features, they highlight the effect of uncertainty in intuitionistic fuzzy set and improve the robustness to noise. Secondly, an improved nonlinear kernel function is proposed to map data into kernel space to measure the distance between data and the cluster centers more accurately. Thirdly, the local spatial-gray information measure is introduced, which considers membership degree, gray features and spatial position information at the same time. Finally, we propose a new measure of intuitionistic fuzzy entropy, it takes into account fuzziness and intuition of intuitionistic fuzzy set. The experimental results show that compared with other IFCM based algorithms, the proposed algorithm has better segmentation and clustering performance.

A Load Balancing Scheme for Distributed SDN Based on Harmony Search with K-means Clustering (K-means 군집화 및 Harmony Search 알고리즘을 이용한 분산 SDN의 부하 분산 기법)

  • Kim, Se-Jun;Yoo, Seung-Eon;Lee, Byung-Jun;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.29-30
    • /
    • 2019
  • 본 논문에서는 다중 컨트롤러가 존재하는 분산 SDN 환경에서 과도한 제어 메시지로 인한 과부하된 컨트롤러의 부하를 줄이기 위하여 이주할 스위치를 K-means 군집화와 Harmony Search(HS)를 기반으로 선정 하는 기법을 제안하였다. 기존에 HS를 이용하여 이주할 스위치를 선택하는 기법이 제시되었으나, 시간 소모에 비하여 정확도가 부족한 단점이 있다. 또한 Harmony Memory(HM) 구축을 위해 메모리 소모 또한 크다. 이를 해결하기 위하여 본 논문에서는 유클리드 거리를 기반으로 하는 K-means 군집화를 이용하여 이주할 스위치를 골라내어 HM의 크기를 줄이고 이주 효율을 향상 시킨다.

  • PDF

Performance Evaluation of k-means and k-medoids in WSN Routing Protocols

  • SeaYoung, Park;Dai Yeol, Yun;Chi-Gon, Hwang;Daesung, Lee
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.4
    • /
    • pp.259-264
    • /
    • 2022
  • In wireless sensor networks, sensor nodes are often deployed in large numbers in places that are difficult for humans to access. However, the energy of the sensor node is limited. Therefore, one of the most important considerations when designing routing protocols in wireless sensor networks is minimizing the energy consumption of each sensor node. When the energy of a wireless sensor node is exhausted, the node can no longer be used. Various protocols are being designed to minimize energy consumption and maintain long-term network life. Therefore, we proposed KOCED, an optimal cluster K-means algorithm that considers the distances between cluster centers, nodes, and residual energies. I would like to perform a performance evaluation on the KOCED protocol. This is a study for energy efficiency and validation. The purpose of this study is to present performance evaluation factors by comparing the K-means algorithm and the K-medoids algorithm, one of the recently introduced machine learning techniques, with the KOCED protocol.