• Title/Summary/Keyword: Mean-field bias 보정

Search Result 22, Processing Time 0.024 seconds

Adjustment of Radar Mean-field Bias Considering Orographic Effect (산악효과를 고려한 Mean-field bias의 보정)

  • Kim, Young-Il;Sung, Gyung-Min;Hwang, Man-Ha;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1136-1140
    • /
    • 2009
  • 지상강우 관측망을 이용한 강우량 측정의 대안으로서 사용되는 기상 레이더를 활용한 강우량 추정의 경우, Z-R 방정식을 이용하여 반사도를 강우량으로 환산하는 방법을 일반적으로 사용한다. 이때 발생하는 각종 오차는 레이더 장비가 가지는 기계적인 오차뿐만 아니라 Z-R 방정식이 가지는 오차 등이 있으며, 이를 보정하기 위해서 레이더를 활용하여 추정된 강우량에 지상강우량계와 레이더강우량과의 비율인 G/R비를 보정하는 방법을 일반적으로 사용한다. 본 연구에서는 이와 같이 레이더 강우량을 보정하기 위해서 사용되는 G/R비를 산정하는데 미치는 지형적인 효과를 고려하기 위해서 광덕산 레이더 유효범위 100km 내(군사분계선 이북 미포함)의 지역에 대하여 군집분석을 실시하여 크게 산악지역과 평야지역으로 구분하고, 각각 구분된 지역에 대하여 G/R 비를 산정하여 초기추정 레이더 강우량에 곱하는 mean-field bias 보정을 실시하였다. 광덕산 레이더 기상관측소의 유효범위 100km 내의 2007년, 2008년 홍수기(6/21${\sim}$9/20)기간 동안 94개 Automatic Weather Station(AWS)지점에 대하여 크게 산악지역과 평야지역으로 지역화 시키는 방법은 비계층적 군집분석 기법 중 fuzzy-c mean 방법을 적용하였다. 또한 광덕산 레이더 반사도 기본 자료는 차폐영역으로 생기는 반사도 데이터 누락을 보완하기 위하여 0도와 1.5도 sweep 합성 10분단위 uf 자료를 사용하였으며, AWS와 보정이 이루어지는 레이더 격자의 크기는 최대 4km${\times}$4km로 선정하였다. 본 연구에 있어서 검증방법은 지역을 구분하기 전과 후를 AWS 실측 관측값과 절대상대오차, 평균제곱근 오차로써 비교하였다.

  • PDF

Assessment of variability and uncertainty in bias correction parameters for radar rainfall estimates based on topographical characteristics (지형학적 특성을 고려한 레이더 강수량 편의보정 매개변수의 변동성 및 불확실성 분석)

  • Kim, Tae-Jeong;Ban, Woo-Sik;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.589-601
    • /
    • 2019
  • Various applications of radar rainfall data have been actively employed in the field of hydro-meteorology. Since radar rainfall is estimated by using predefined reflectivity-rainfall intensity relationships, they may not have sufficient reproducibility of observations. In this study, a generalized linear model is introduced to better capture the Z-R relationship in the context of bias correction within a Bayesian regression framework. The bias-corrected radar rainfall with the generalized linear model is more accurate than the widely used mean field bias correction method. In addition, we analyzed variability of the bias correction parameters under various geomorphological conditions such as the height of the weather station and the separation distance from the radar. The identified relationship is finally used to derive a regionalized formula which can provide bias correction factors over the entire watershed. It can be concluded that the bias correction parameters and regionalized method obtained from this study could be useful in the field of radar hydrology.

Adjustment of the Mean Field Rainfall Bias by Clustering Technique (레이더 자료의 군집화를 통한 Mean Field Rainfall Bias의 보정)

  • Kim, Young-Il;Kim, Tae-Soon;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.8
    • /
    • pp.659-671
    • /
    • 2009
  • Fuzzy c-means clustering technique is applied to improve the accuracy of G/R ratio used for rainfall estimation by radar reflectivity. G/R ratio is computed by the ground rainfall records at AWS(Automatic Weather System) sites to the radar estimated rainfall from the reflectivity of Kwangduck Mt. radar station with 100km effective range. G/R ratio is calculated by two methods: the first one uses a single G/R ratio for the entire effective range and the other two different G/R ratio for two regions that is formed by clustering analysis, and absolute relative error and root mean squared error are employed for evaluating the accuracy of radar rainfall estimation from two G/R ratios. As a result, the radar rainfall estimated by two different G/R ratio from clustering analysis is more accurate than that by a single G/R ratio for the entire range.

Development of bias correction scheme for high resolution precipitation forecast (고해상도 강수량 수치예보에 대한 편의 보정 기법 개발)

  • Uranchimeg, Sumiya;Kim, Ji-Sung;Kim, Kyu-Ho;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.7
    • /
    • pp.575-584
    • /
    • 2018
  • An increase in heavy rainfall and floods have been observed over South Korea due to recent abnormal weather. In this perspective, the high-resolution weather forecasts have been widely used to facilitate flood management. However, these models are known to be biased due to initial conditions and topographical conditions in the process of model building. Theretofore, a bias correction scheme is largely applied for the practical use of the prediction to flood management. This study introduces a new mean field bias correction (MFBC) approach for the high-resolution numerical rainfall products, which is based on a Bayesian Kriging model to combine an interpolation technique and MFBC approach for spatial representation of the error. The results showed that the proposed method can reliably estimate the bias correction factor over ungauged area with an improvement in the reduction of errors. Moreover, it can be seen that the bias corrected rainfall forecasts could be used up to 72 hours ahead with a relatively high accuracy.

A Study on Regionalization of Bias Correction Parameters for Radar Precipitation Considering Geomorphic Characteristics (지형특성을 고려한 레이더 강수량 편의보정 매개변수 지역화 연구)

  • Kim, Tae-Jeong;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.57-57
    • /
    • 2019
  • 최근 수문기상학 분야에서 레이더 강수량을 활용한 응용연구가 활발하게 진행되고 있다. 하지만 레이더 강수량은 경험적으로 설정된 레이더 반사도-강우강도 관계식을 활용하여 레이더 강수량을 산정하기 때문에 실제지상에 도달하는 강수량과 정량적인 오차가 필연적으로 발생한다. 따라서 고해상도의 레이더 강수량을 활용한 신뢰도 높은 수문해석을 위하여 레이더 강수량의 편의보정이 필수적으로 선행되어야한다. 본 연구에서는 불확실성을 고려한 레이더 강수량 편의보정을 위하여 Bayesian 추론기법과 일반화 선형모형(generalized linear model)을 연계하여 레이더 강수량 편의보정 매개변수를 산정하였다. 일반화 선형모형을 적용한 레이더 강수량 편의보정 결과는 현재 널리 사용되고 있는 평균보정(mean field bias) 기법에 비하여 통계지표가 개선된 레이더 강수량 편의보정 결과를 도출하였다. 추가적으로 지형학적 특성에 따른 레이더 강수량 편의보정 매개변수의 변동성을 분석하여 고도 및 이격거리에 따른 편의보정 매개변수의 지역화 공식을 제시하였다. 본 연구를 통하여 개발된 레이더 강수량 편의보정 매개변수 산정 및 지역화 연구는 레이더 관측전략 수립과정에 유용한 기초자료로 활용될 것으로 판단된다.

  • PDF

Flood Simulation using Vflo and Radar Rainfall Adjustment Data by Statistical Objective Analysis (통계적 객관 분석법에 의한 레이더강우 보정 및 Vflo를 이용한 홍수모의)

  • Noh, Hui Seong;Kang, Na Rae;Kim, Byung Sik;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.14 no.2
    • /
    • pp.243-254
    • /
    • 2012
  • Recently, the use of radar rainfall data that can help tracking of the development and movement of rainfall's spatial distribution is drawing much attention in hydrology. The reliability of existing radar rainfall compared to gauge rainfall data on the ground has not yet been confirmed and so we have difficulties to apply the radar rainfall in hydrology. The radar rainfall for the applications in hydrology are adjusted merging method derived from gage. This study uses the Mean-Field Bias (MFB) and Statistical Objective Analysis (SOA) as correction methods to create adjusted grid-based radar rainfall data which can represent the temporal and spatial distribution of rainfall. This study used a storm event occurred in August 2010 for the adjustment of radar rainfall. In addition, the grid-based distributed rainfall-runoff model (Vflo), which enables more detailed examinations of spatial flux changes in the basin rather than the lumped hydrological models, has been applied to Gamcheon river basin which is a tributary of Nakdong River located in south-eastern part of the Korean peninsular and the basin area is $1005km^2$. The simulated runoff was compared with the observed runoff in an attempt to evaluate the usability of radar rainfall data and the reliability of the correction methods. The error range of peak discharge using each correction method was within 20 percent and the efficiency of the model was between 60 and 80 percent. In particular, the SOA method showed better results than MFB method. Therefore, the SOA method could be used for the adjustment of grid-based radar rainfall and the adjusted radar rainfall can be used as an input data of rainfall-runoff models.

Regression Analysis of the Log-Normally Distributed Data and Mean Field Bias Correction of Radar Rainfall (대수정규분포를 따르는 자료의 회귀분석과 레이더 강우의 편의 보정)

  • Yoo, Chul Sang;Park, Cheol Soon;Yoon, Jung Soo;Ha, Eun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.5B
    • /
    • pp.431-438
    • /
    • 2011
  • This study investigated the problem of mean-field bias correction under the assumption that the radar and rain gauge rainfall data follow the log-normal distribution. Regression curves for the average, median and mode of the radar and rain gauge rainfall were derived and evaluated for their usefulness. Additionally, these regression curves were compared with those derived under the assumption that the radar and rain gauge data follow the normal distribution. This study investigated the regression results for the Typhoon Meami occurred in 2003 as an example. As results, three regression lines with the radar rainfall as the independent variable were found to underestimate the rainfall, while those with the rain gauge rainfall as the independent variable to overestimate. Among three types of regression curves considered, the result for the average was most appropriate. However this case was found to be inferior to the regression line passing the origin under the assumption of the normal distribution with the rain gauge rainfall as its independent variable. So it was hard to conclude that the consideration of the log-normality on the correction of radar rainfall is beneficial.

Mean Field Bias Correction of the Very-Short-Range-Forecast Rainfall using the Kalman Filter (Kalman Filter를 이용한 초단기 예측강우의 편의 보정)

  • Yoo, Chul-Sang;Kim, Jung-Ho;Chung, Jae-Hak;Yang, Dong-Min
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.17-28
    • /
    • 2011
  • This study applied the Kalman Filter for real-time forecasting the G/R (ground rain gauge rainfall/radar rainfall) ratio to correct the mean field bias of the very-short-range-forecast (VSRF) rainfall. The MAPLE-forecasted rainfall was used as the VSRF rainfall, also the methodology for deciding the G/R ratio was improved by evaluating the change of G/R ratio characteristics depending on the threshold and accumulation time. This analysis was done for the inland, mountain, and coastal regions, separately, for their comparison. As the results, more stable G/R ratio could be estimated by applying the threshold and accumulation time, whose forecasting accuracy could also be secured. The accuracy of the corrected rainfall forecasting by the forecasted G/R ratio was the best in the inland region but the worst in the coastal region.

The Correction of Mean-Field Bias of Rain Radar Rainfall and Estimation of Sampling Error (강우레이더 자료의 편의 보정과 관측오차 산정)

  • Yoo, Chul-Sang;Yoon, Jeong-Soo;Kim, Kyoung-Junn;Choi, Jeong-Ho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.32-36
    • /
    • 2009
  • 레이더 강우의 편의 추정은 근본적으로 레이더 강우의 평균과 참값으로 가정되는 우량계 강우의 평균과의 차이를 결정하는 문제이다. 두 관측치의 차이를 정확히 결정하기 위해서는 두 관측치의 차이에 대한 분산이 매우 작아야 하며, 따라서 비교되는 관측치의 수가 충분히 확보되어야 한다. 본 연구에는 임진강 유역에서와 같이 일부 지역에만 우량계의 설치가 가능한 경우를 대상으로 하고자 한다. 임진강 유역에서와 같이 지역적으로 편중된 지상 강우자료를 활용하여 강우레이더 자료의 편의 보정을 통한 품질 향상 방안을 제시하였다. 또한 차폐 등을 이유로 레이더 강우가 대상 유역 또는 소유역을 완전하게 포괄하지 못하는 경우에 대해 가용한 레이더 강우를 이용하여 면적평균강우를 산정하는 경우에 포함될 수 있는 오차의 규모를 추정하였다. 강화 강우레이더의 반경은 한강 유역의 일부를 제외하고 대부분을 덮는다. 이러한 강화 강우 레이더의 한강유역에 대한 수문 적용성을 판단하기 위해 차폐로 인한 관측오차 산정 시 한강유역에도 적용해보았다.

  • PDF

The Advanced Bias Correction Method based on Quantile Mapping for Long-Range Ensemble Climate Prediction for Improved Applicability in the Agriculture Field (농업적 활용성 제고를 위한 분위사상법 기반의 앙상블 장기기후예측자료 보정방법 개선연구)

  • Jo, Sera;Lee, Joonlee;Shim, Kyo Moon;Ahn, Joong-Bae;Hur, Jina;Kim, Yong Seok;Choi, Won Jun;Kang, Mingu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.155-163
    • /
    • 2022
  • The optimization of long-range ensemble climate prediction for rice phenology model with advanced bias correction method is conducted. The daily long-range forecast(6-month) of mean/ minimum/maximum temperature and observation of January to October during 1991-2021 is collected for rice phenology prediction. In this study, the concept of "buffer period" is newly introduced to reduce the problem after bias correction by quantile mapping with constructing the transfer function by month, which evokes the discontinuity at the borders of each month. The four experiments with different lengths of buffer periods(5, 10, 15, 20 days) are implemented, and the best combinations of buffer periods are selected per month and variable. As a result, it is found that root mean square error(RMSE) of temperatures decreases in the range of 4.51 to 15.37%. Furthermore, this improvement of climatic variables quality is linked to the performance of the rice phenology model, thereby reducing RMSE in every rice phenology step at more than 75~100% of Automated Synoptic Observing System stations. Our results indicate the possibility and added values of interdisciplinary study between atmospheric and agriculture sciences.