• Title/Summary/Keyword: Mean wave period

Search Result 124, Processing Time 0.026 seconds

Gallbadder Dynamics Before and After Extracorporeal Shock Wave Lithotripsy (체외충격파 담석 쇄석술 전후의 담낭운동성의 변화)

  • Lee, Myung-Hae;Suk, Jae-Dong;Moon, Dae-Hyuk;Kim, Myung-Hwan;Min, Young-Il
    • The Korean Journal of Nuclear Medicine
    • /
    • v.25 no.1
    • /
    • pp.53-60
    • /
    • 1991
  • Extracorporeal shock wave lithotripsy (ESWL) with adjunctive oral litholytic therapy has proven to be a useful treatment in selected patients with gallbladder stones. To study the effect of ESWL on gallbladder dynamics, $^{99m}Tc-DISIDA$ hepatobiliary scintigraphy was done for 25 patients with symptomatic gallstones and 10 normal controls. Of these 25 patients, 15 were treated with ESWL and adjunctive oral litholytic agents (ESWL group) and 10 were treated only with oral litholytic agents (UDCA group). After overnight fast and gallbladder visualization on a routine hepatobiliary scintigraphy with 7mCi of $^{99m}Tc-DISIDA$, subjects were given fatty meal and imaged with a gamma camera interfaced to a computer (1 frame/minute for 70 minutes). A gallbladder time-activity curve was generated and latent period (LP), ejection period (EP), ejection fraction (EF) and ejection rate (ER) were calculated. ESWL group were studied before, 1day after and 2weeks after ESWL, and WDCA group were studied before and 2weeks after starting oral medication. Mean basal EF was significantly reduced in patients but other parameters were not reduced. In ESWL group, mean EF and mean ER at lday after ESWL were reduced. In 3 of them, gallbladder was not visualized at all. Two weeks after ESWL, however, all parameters were recoverd to basal level. In UDCA group, all parameters were not changed significantly during medication. We can conclude that ESWL has such immediate adverse effect on gallbladder dynamics as reducing contractility and nonvisualization of gallbladder but it has no long-term effect.

  • PDF

Numerical Simulation of Longshore Current due to Random Sea Waves (불규칙파에 의한 연안류의 수치계산)

  • 권정곤;양윤모
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.2
    • /
    • pp.72-82
    • /
    • 1992
  • To accurately estimate nearshore current in shallow water regions. it is necessary to investigate the irregular wave transformation characteristics and radiation stress produced by random sea waves. This research is to investigate the application or the individual wave Analysis Method. the Component Wave Analysis Method and Representative Wave Analysis Method in the shallow water region. These methods were estimated by wave shallowing transformation when the waves propagate from deep water to shallow water region b)r generating regular waves, two component waves and irregular waves (Bretschneider-Mitsuyasu type). That is, the Indivisual Wave Analysis Method is to investigate from the viewpoint of shallow water transformation of wave statistical characteristics and their zero-down-crossing waves (wave height period and wave celerity). And the component Wave Analysis Method is to investigate from the view point of shallow water transformation of basic frequency component wave and their interference frequency component wave. In addition, this research is to compare the measured mean water level elevation with the calculated one from radiation stress of irreguar waves that is assumed in the three methods above.

  • PDF

Evaluation of Coastal Sediment Budget on East Coast Maeongbang Beach by Wave Changes (파랑 변화에 따른 동해안 맹방 해수욕장 연안 표사수지 파악)

  • Kim, Gweon-Su;Ryu, Ha-Sang;Kim, Sang-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.564-572
    • /
    • 2019
  • Numerical simulation of the sediment by the Delft3d model was conducted to examine the changes in the sediment budget transport caused by long-term wave changes at the Maengbang beach. Representative waves were generated with input reduction tools using NOAA NCEP wave data for about 40 years, i.e., from January 1979 to May 2019. To determine the adequacy of the model, wave and depth changes were compared and verified using wave and depth data observed for about 23 months beginning in March 2017. As a result of the error analysis, the bias was 0.05 and the root mean square error was 0.23, which indicated that the numerical wave results were satisfactory. Also, the observed change in depth and numerical result were similar. In addition, to examine the effect due to long-term changes in the waves, the NOAA wave data classified into each of the representative wave grades, and then the annual trend of the representative wave was analyzed. After deciding the weight of each wave class considering the changed wave environment in 2100, the amounts of sedimentation, deposition, and the sediment transport budget were reviewed for the same period. The results indicated that the sedimentation pattern did not change significantly compared to the current state, and the amount of the local sediment budget shown in the present state was slightly less. And there has been a local increase in the number of sediment budget transport, but there is no significant difference in the net and amount of sediment movements.

Optimization of SWAN Wave Model to Improve the Accuracy of Winter Storm Wave Prediction in the East Sea

  • Son, Bongkyo;Do, Kideok
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.273-286
    • /
    • 2021
  • In recent years, as human casualties and property damage caused by hazardous waves have increased in the East Sea, precise wave prediction skills have become necessary. In this study, the Simulating WAves Nearshore (SWAN) third-generation numerical wave model was calibrated and optimized to enhance the accuracy of winter storm wave prediction in the East Sea. We used Source Term 6 (ST6) and physical observations from a large-scale experiment conducted in Australia and compared its results to Komen's formula, a default in SWAN. As input wind data, we used Korean Meteorological Agency's (KMA's) operational meteorological model called Regional Data Assimilation and Prediction System (RDAPS), the European Centre for Medium Range Weather Forecasts' newest 5th generation re-analysis data (ERA5), and Japanese Meteorological Agency's (JMA's) meso-scale forecasting data. We analyzed the accuracy of each model's results by comparing them to observation data. For quantitative analysis and assessment, the observed wave data for 6 locations from KMA and Korea Hydrographic and Oceanographic Agency (KHOA) were used, and statistical analysis was conducted to assess model accuracy. As a result, ST6 models had a smaller root mean square error and higher correlation coefficient than the default model in significant wave height prediction. However, for peak wave period simulation, the results were incoherent among each model and location. In simulations with different wind data, the simulation using ERA5 for input wind datashowed the most accurate results overall but underestimated the wave height in predicting high wave events compared to the simulation using RDAPS and JMA meso-scale model. In addition, it showed that the spatial resolution of wind plays a more significant role in predicting high wave events. Nevertheless, the numerical model optimized in this study highlighted some limitations in predicting high waves that rise rapidly in time caused by meteorological events. This suggests that further research is necessary to enhance the accuracy of wave prediction in various climate conditions, such as extreme weather.

Estimation of Representative Wave Period and Optimal Probability Density Function Using Wave Observed Data around Korean Western Coast (국내 서해안 파랑 관측자료를 이용한 대표주기 산정 및 최적 확률밀도함수 추정)

  • Uk-Jae Lee;Hong-Yeon Cho;Jin Ho Park;Dong-Hui Ko
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.146-154
    • /
    • 2023
  • In this study, the peak wave period Tp and mean wave period T02 and Tm-1, 0, which are major parameters for classifying ocean characteristics, were calculated using water surface elevation data observed from the second west coast oceanographic and meteorological observation tower. In addition, the ratio of abnormal data, correlation analysis, and optimal probability density function were estimated. In the case of Tp among the calculated representative periods, the proportion of abnormal data was 5.73% and 0.67% at each point, and T02 was 4.35% and 0.01%. Tm-1, 0 was found to be 2.82% and 0.03%. Meanwhile, as a result of analyzing the relationship between T02 and Tp, the relationship was calculated to be 0.53 and 0.63 for each point. The relationship between Tm-1, 0 and Tp was 1.15 and 1.32, respectively, and T02, Tm-1, 0 was 1.18 and 1.22. As a result of estimating the optimal probability density function of the calculated representative period, Tp followed the 'Log-normal' and 'Normal' distributions at each point, and T02 was 'Gamma', 'Normal' distribution and Tm-1, 0 showed that 'Log-normal' and 'Normal' distribution were dominant, respectively. It is decided that these results can be used as basic data for wave analysis conducted on the west coast.

Reproduction of Extreme Waves Caused by Typhoon MAEMI with Wave Hindcasting Method, WAM (II) - Characteristics of extreme waves generated by Typhoon MAEMI in the south coast of Korea - (제3세대 파랑추산모형을 이용한 태풍 ‘매미’의 극한파랑 재현 (II) - 태풍 ‘매미’가 야기한 우리나라 남해안 일대의 극한파랑 특성 -)

  • Shin, Seung-Ho;Hong, Key-Yong
    • Journal of Navigation and Port Research
    • /
    • v.28 no.8
    • /
    • pp.745-751
    • /
    • 2004
  • Following a preceding study of Shin et al.(2004), wave fields for a month of September of 2003 are simulated based on the modified WAM cycle 4 model that enables the precise wave hindcasting with fine spatial meshes, and characteristics of extreme waves at the south coast of Korea are analyzed The accuracy of applied wave model is verified by comparing computed wave parameters and corresponding ones measured at Ieodo ocean research station. The wave hindcasting of typhoon 'Maemi' with an hour time interval reveals the extreme wave characteristics at 4 primary locations of south coast of Korea as follows: 1) At the front sea of Chaguido in the south of Jeju-do, the maximum significant wave height, mean wave period and mean wave direction appear to be 7.41m, 13.65s and $6.4^{\circ}$ respectively at 16:00 KST of Sep. 12, 2003. 2) At the entrance of Masan Bay, 12.50m, 13.65s and $1.2^{\circ}$ at 21:00 KST of Sep. 12. 3) At the front sea of Suyoung Bay, 13.85m, 13.81s and $0.2^{\circ}$ at 22;00 KST of Sep. 12. 4) At the front sea of Ulsan port, l1.00m, 13.25s and $2.8^{\circ}$ at 23:00 KST of Sep. 12.

Analysis of Undertow Using$\textsc{k}-\varepsilon$ Turbulence Model ($\textsc{k}-\varepsilon$ 난류 모형을 이용한 해향저류의 해석)

  • Hwang, Seung-Yong;Lee, Kil-Seong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.4
    • /
    • pp.357-368
    • /
    • 1993
  • With the assumption of the diffusion dominated flow, a numerical model has been developed for undertow and turbulence structure under the breaking wave by using the $textsc{k}$-$\varepsilon$ turbulence model. Undertow is a strong mean current which moves seqwards below the level of wave trough in the surf zone. The turbulence, generated by wave breaking in the roller, spreads and dissipates downwards. The governing equations are composed of the equation of motion with the period-averaged shear stress due to waves; $textsc{k}$- and $\varepsilon$-equations with the turbulence energy Production due to wave breaking. They are discretised by the three-level fully implicit scheme, which can be solved by using Thomas algorithm. The model gives good agreements with measurements except for the station that is closest to the breaking point.

  • PDF

Assessment of the Effect of Probabilistic Modeling of Sea-States in Fatigue Damage Calculations

  • FolsØ, Rasmus;Dogliani, Mario
    • Journal of Ship and Ocean Technology
    • /
    • v.3 no.3
    • /
    • pp.1-12
    • /
    • 1999
  • Spectral fatigue damage calculations has been performed on four ships in order to assess the effect that the probabilistic modeling of sea states has on the estimated fatigue life. The damage estimation method is based on the Miner- Palmgren fatigue damage formulation and a spectral approach is used to determine the necessary variances of the stress processes. Both the horizontal and vertical hull girder bending induced stress process together with the local water pressure induced stress process is taken into account. The wave scatter diagrams are applied in the calculations and their fatigue severity is assessed by analyzing the results obtained with the ten scatter diagrams and the four ships. All four ships are analyzed both in full load and ballast conditions and while traveling at both full and reduced speed. It is found that the fatigue severity of a wave scatter diagram is dependent on several parameters, some of these being the extreme wave hight extrapolated from the scatter diagram and the mean zero up-crossing period in conjunction with the ship length . Based on these three parameters and expression is derived in order to calculate one single number describing the fatigue severity of a scatter diagram with respect to a certain ship.

  • PDF

Analysis of the Hydraulic Behaviour in the Nearshore Zone by a Numerical Model (수치모형에 의한 연안해역 해수운동의 분석)

  • Lee, Hee-Young;Jeoung, Sun-Kil
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.73-83
    • /
    • 1994
  • The unproper development of the nearshore zone can enhance the diffusion of pollutant in the nearshore zone resulting in unbalanced sediment budget of beach which causes alteration of beach topography. Therefore, it is required to predict the effects of the envirnmental change quantitatively. In this paper, the depth-averaged and time-averaged energy balance equation is selected to acount for the wave transformation such as refraction, shoaling effect, the surf zone energy disipation, wave breaking index and bore, due to wave breaking in the shore region.(Numerical solutions are obtained by a finite difference method, ADI and Upwind. For the calculation of the wave-induced current, the unsteady nonlinear depth-averaged and time-averaged governing equation is derived based on the continuity and momentum equation for imcompressible fluid.) Numerical solutions are obtained by finite difference method considering influences of factors such as lateral mixing coefficient, bed shear stress, wave direction angle, wave steepness, wave period and bottom slope. The model is applied to the computation of wave transformation, wave-induced current and variation of mean water leel on a uniformly sloping beach.

  • PDF

Estimation of Site Response Characteristics at Town Fortress Areas Damaged by Historical Earthquakes (역사 지진 피해 발생 읍성 지역의 부지 응답 특성 평가)

  • Sun, Chang-Guk;Bang, Eun-Seok;Chung, Choong-Ki;Kim, Dong-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.125-132
    • /
    • 2006
  • To estimate the local site effects at two town fortress areas where stone parapets were collapsed during historical earthquakes, site characteristics were evaluated using borehole drillings and seismic tests and equivalent-linear site response analyses were conducted based on the shear wave velocity (Vs) profiles determined from site investigations. The study sites are categorized as site classes C and B according to the mean Vs to 30 m ranging from 500 to 850 m/s, and their site periods are distributed in short period range of 0.06 to 0.16 sec. For site class C in the study areas, the short-period (0.1-0.5 sec) and mid-period (0.4-2.0 sec) site coefficients, $F_{\alpha}$ and $F_\nu$ specified in the Korean seismic design guide, underestimate the ground motion in short-period band and overestimate the ground motion in mid-period band, respectively, due to the characteristics showing high amplification in short period range, which can result in the collapse of stone parapets having the short natural period.

  • PDF