• Title/Summary/Keyword: Mean volume backscattering strength

Search Result 18, Processing Time 0.024 seconds

Investigations of the Potential Fisheries Resources in the Southern Waters of Korea - Hydroacoustic Investigations of Abundance and Distributing of Fish - (한국 남해안의 잠재어업자원 조사연구 - 어업생물자원의 음향학적 조사 -)

  • Lee, Dae-Jae;Kim, Jin-Geon;Sin, Hyeong-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.3
    • /
    • pp.259-273
    • /
    • 1998
  • The hydroacoustic surveys to provide the essential information for the assessment, management and utilization of fishery resources in the southern waters of Korea were carried out during five research cruises between October 1996 and October 1997 by the training ship KAYA of Pukyong National University. These hydroacoustic investigations were designed to obtain more precise estimates of the geographic distribution, absolute abundance and biological characteristics of the fishery resources, and the vertically integrated densities of fish in terms of volume backscattering strength(SV) by survey region and depth bins, such as the entire water column and the 0~ 10 m from bottom fraction, were measured separately. Hydroacoustic data were collected by using a Simrad EK 500 Scientific echo sounder operating at two frequencies of 38kHz and 120kHz and the data stored in field were later processed on a HP PC using a Simrad EP 500 echo integration and target strength analysis system. The biological compositions of echo signal were identified and sampled using a demersal trawl during daylight hours. The mean target strength to scale the echo integration data for hydroacoustic surveys was derived from the relationship between the SV and the weight of trawl catch per unit volume of the water column sampled by demersal trawls. The results obtained can be summarized as follow : 1. The mean volume backscattering strength for the entire water column in the southern waters of Korea between 1996 and 1997 were -67.2 dB and -70.9 dB at two frequencies of 38 kHz and 120 kHz , respectively, and for the bottom layer of the 0-10 m from bottom friction were -68.8 dB, -70.2 dB, respectively. That is, the volume backscattering strength for the entire water column at low frequency was higher than that at high frequency. 2. The relationship between the mean backscattering strength (〈SV〉, dB) for the depth strata of trawl hauls and the weight (C, kg/m3) per cubic meter of the catch sampled by bottom trawling in the southern waters of Korea in January and July 1997 were expressed by the following equations: 38 kHz : 〈SV〉= -28.2 + 10 log(C), 120 kHz : 〈SV〉= -32.4 + 10 log(C). The mean weight -normalized target strengths derived from these equitions were -28.2 dB/ kg, -32.4 dB/ kg at 38 kHz and 120 kHz , respectively. That is, the mean weight -normalized target strength at 38 kHz was 4.2 dB higher than that at 120 kHz. 3. The distribution density of fish in terms of biomass per unit volume in the southern waters of Korea were estimated to be 125.9 $\times$ 10-6 kg/m3 and 141.3 $\times$ 10-6 kg/m3 at 38 kHz and 120 kHz , respectively.

  • PDF

Species Identification and Noise Cancellation Using Volume Backscattering Strength Difference of Multi-Frequency (다중 주파술의 체적산란강도 차이를 이용한 에코그램 내에서의 종 분리와 잡음 제거)

  • KANG Donhyug;SHIN Hyoung-Chul;KIM Suam;LEE Yoonho;HWANG Doojin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.5
    • /
    • pp.541-548
    • /
    • 2003
  • Species identification in hydroacoustic survey is one of the key requirements to estimate biomass of organism and to understand the structure of zooplankton community. Feasibility of species identification using two frequencies (38 and 120 kHz) was investigated on the basis of mean volume backscattering strength difference (MVBS). Virtual echogram technique was applied to two frequencies data sets that obtained from surveys in the Antarctic Ocean and Yellow Sea. Virtual echogram method using MVBS revealed the possibility of species identification, which species identification relying on visual scrutiny of single frequency acoustic data resulted in significant errors in biomass estimation. Through noise cancellation using MVBS, much of the acoustic noise caused by acoustic instruments could be removed in new virtual echogram, and the biomass estimation and data quality was improved.

Acoustic Scattering Layers in the East China Sea ( 2 ) -Vertical Distribution of Volume Scattering Strength- (동지나해의 초음파 산란층에 관한 연구 ( 2 ) -체적산란강도의 연직분포-)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.1
    • /
    • pp.20-25
    • /
    • 1990
  • During the summer of 1989, the authors carried out the hydroacoustic surverys to investigate the vertical distribution of volume backscattering strength in the East China Sea and simultaneously the biological sampling of the scattering layers by bottom trawling. The echoes from the scattering layers was continuously measured by using a 50 kHz echo sounder during the day and night. A data acquisition system was used to record digitally the envelope of the echoes and the echo integration technique was used to determine the scattering strength proportional to biomass density in each layer. The vertical profiles of volume backscattering strength also were compared with the one of water temperature. The results obtained can be summarized as follows: 1. The vertical profiles of mean volume backscattering strength at day and night suggested that during the night the biggest fish concentrations appeared in the mixed layer above the thermocline and during the day near the bottom. In another profiles where the thermocline was not well developed, peaks in scattering appeared at midwater depths and near the bottom. 2. The maximum values of mean volume backscattering strengths varied from -49.3 dB to -48.0 dB on different regions and at different times of the day and night. 3. Trawl data indicated that the organisms consisting of the scattering layer near the bottom were squid and various species of demersal fishes.

  • PDF

Verification of mean volume backscattering strength from acoustic doppler current profiler by using calibrated sphere method (교정구에 의한 음향 도플러유향유속계의 평균 체적후방산란강도 검토)

  • Yang, Yong-Su;Lee, Kyounghoon;Lee, Dae-Jae;Lee, Dong-Gil
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.4
    • /
    • pp.551-555
    • /
    • 2014
  • ADCPs have been widely used to estimate the dynamic characteristics and biomass of sound scattering layers (SSLs), and swimming speed of fish schools for analyzing SSLs spatial distribution and/or various behavior patterns. This result showed that the verification of the mean volume backscattering strength (MVBS or averaged SV, dB) acquired by the ADCP would be necessary for a quantitative analysis on the spatial distribution and the biomass estimation of the SSLs or fish school when ADCP is used for estimating their biomass. In addition, the calibrated sphere method was used to verify values of each MVBS obtained from 4 beams of ADCP (153.6 kHz) on the base of 3 frequencies (38, 120, 200 kHz) of Scientific echo sounder's split beam system. Then, the measured SV values were compared and analyzed in its Target Strength (TS, dB) values estimated by a theoretical acoustic scattering model.

Hydroacoustic Investigations on the Distribution Characteristics of the Anchovy at the South Region of East Sea (음향에 의한 동해안 남부해역 멸치어군의 분포특성조사 연구)

  • 강명희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.1
    • /
    • pp.16-23
    • /
    • 1996
  • Spatial distribution characteristics, volume backscattering strength and species composition of midwater trawling catch was analyzed biological and acoustical characteristics of anchovy shoal, using a high resolution echo - sounder at the south region of East sea of Korea. 1) In the survey site A of Lat.35$^{\circ}$55'N, Long.129$^{\circ}$45'E, the anchovy shoal of small to middle size with the horizontal range of 10~25m and large size with the horizontal range of 40~50m were distributed together. However in the survey site B of Lat.35$^{\circ}$38'N, Long.129$^{\circ}$40'E, the anchovy shoal was observed to be mainly small size which about 78% of the detected shoal. Another was that the anchovy shoal with the vertical range of 2~8m occupied about 68.6% in the survey site A and that of 6~12m occupied about 42.5% in the survey site B. The mainly the site A and B were found to be 10~50m super (2), 64.5% and 20~80m super (2), 66%, respectively. 2) The volume backscattering strength in the site A and B were observed to be -44.0~ -28.0dB, respectively. In the site A, the backscattering strength of -40.0~ -30.0dB was analyzed about 41.4%. 3) Most of total anchovy shoal was concentrated in the water layer of 50~100m in depth with 15.3~18.5$^{\circ}C$, 34.0~34.3$\textperthousand$ in the survey site A and 14.2~16.4$^{\circ}C$, 34.1~34.2$\textperthousand$ in the survey site B. 4) Mean total length(TL) and body weight(BW) of anchovy in the survey site A were 9.9cm and 4.4g respectively, with TL-BW relationship of BW=0.0007T$L^3.65$super (3.85). In site B, mean total length(TL) and body weight(BW) were 11.2cm and 8.7g, with TL-BW relationship of BW=0.0023T$L^3.36$.

  • PDF

Investigation of Demersal Fisheries Resources of the East China Sea - 2 . Hydroacoustic - Bottom Trawl Survey , November 1989 - (동지나해 저서어류의 자원조사 연구 - 2 . 저서어류자원의 음향학적 조사 ( 1989년 ) -)

  • 박중희
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 1990
  • A cooperative Korea-Japan investigation for the demersal fisheries resources of the East China Sea was carried out by using the training ship Oshoro Maru belong to Hokkaido University Japan, during 5-12 November, 1989. The research vessel sampled 24 stations with demersal trawls on the East China Sea continental shelf, and 96 nautical miles of track line were surveyed hydroacoustically. The echo sounder used during the survey was of a scientific type having echo integration capabilities and the computer system was programmed to obtain echo integration data for each depth stratum between the transducer and the bottom. The target strength of fish school(TS per 1kg) was estimated from the relationship between mean volume backscattering strength and catches caught by the demersal trawls. The results obtained can be summarized as follows: 1. Approximately 96 species were identified from survey catches. 2. The mean volume backscattering strength for the layer occupied by bottom trawls at 25 and 100 KHz were-63.9 dB and -67.3 dB, respectively. Then the average catch per unit time of each trawl haul was 58.8 kg/hour. 3. The mean volume backscattering strength for the entire layer between the transducer and the bottom at 25 and 100KHz were -61.9 dB and -67.0 dB, respectively. 4. The mean fish school target strength per unit weight(TS/kg) at 25 and 100 KHz were -23.6 dB/kg and -26.6 dB/kg, respectively.

  • PDF

Measurement of vertical migration speed of Sound Scattering Layer using an bottom mooring type Acoustic Doppler Current Profiler (해저설치형 음향도플러유향유속계를 이용한 음향산란층의 연직이동속도 측정)

  • Jo, Hyeon-Jeong;Lee, Kyoung-Hoon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.449-457
    • /
    • 2010
  • This study shows that the vertical migration speed of sound scattering layers (SSLs), which is distributed in near Funka Bay, were measured by 3D velocity components acquired from a bottom moorng ADCP. While the bottom mooring type has a problem to measure the velocity vectors of sound scattering layer distributed near to surface, both the continuous vertical migration patterns and variability of backscatterers were routinely investigated as well. In addition, the velocity vectors were compared with the vertical migration velocity estimated from echograms of Mean Volume Backscattering Strength, and estimated to produce observational bias due to SSLs which is composed of backscatterers such as euphausiids, nekton, and fishes have swimming ability.

Hydroacoustic Investigation of Demersal Fisheries Resources in the Southeastern Area of the Cheju Island , Korea - Acoustical Estimation of Fish Density and Distribution- (제주도 동남해역의 저서어업자원 조사연구 - 음향에 의한 어업생물의 분포밀도 추정 -)

  • Lee, Dae-Jae;Lee, Won-Woo
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.32 no.3
    • /
    • pp.266-272
    • /
    • 1996
  • The distribution and abundance of fish in the Cheju southeastern area was studied by the combined hydroacoustic and bottom trawl surveys in April 1994 and in July 1995, respectively. The main purpose of these investigations was to provide the basic data for this management and the biomass estimation of commercially important demersal fish stocks in this area. The hydroacoustic surveys were performed by using a 50 kHz scientific echo sounder system with a microcomputer-based echo integrator. Acoustical measurements of fish abundance and distribution were conducted along the cruise tracks of research vessel and during all trawl hauls by continuous echo sounding. The average weight-normalized target strength for demersal fish aggregations was derived from the relationship between the mean volume backscattering strength for the depth strata of trawl hauls and the weight per cubic meter of trawl catches. The geographical distribution of fish stocks in the 1994 survey area was investigated in relation to oceanographic conditions. The results obtained can be summarized as follows: 1. From the 1994 and 1995 survey data, the relationship between the mean volume backscattering strength (, dB) for the depth strata of trawl hauls and the weight (W, kg/$m^3$) per cubic meter of trawl catches was expressed by the following equation = - 32.8+ lOlog(W) The average weighted-target strength value at 50 kHz derived from this equation was .. 32.8 dB/kg. 2. In 1994 and 1995, both surveys showed a trend of decreasing fish abundance toward the southern area of the Cheju Island with high densities offish along the west coast ofth.e Tsushima Island. The highest demersal concentrations in the southern area of the CheJu Island appeared in bottom waters colder than $12^{\circ}C.$. . 3. From the results of combined bottom trawl and hydroacoustic surveys, the estunated fish densities in the southeastern area of the Cheju Island were 1.5488 x $10^-4$kg/$m^3$ in the 1994 surveyand 1.9498 x $10^-4$kg/$m^3$ in the 1995 survey, respectively.

  • PDF

Density Estimation of an Euphauiid (Euphausia pacifica) in the Sound Scattering Layer of the East China Sea (동중국해 음향 산란층내의 euphausiid (Euphausia pacifica) 밀도 추정)

  • KANG Donhyug;HWANG Doojin;SOH Hoyoung;YOON Yangho;SUH Haelip;KIM Yongju;SHIN Hyunchul;IIDA Kohji
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.6
    • /
    • pp.749-756
    • /
    • 2003
  • Hydroacoustic and open-closing zooplankton net survey were conducted to understand the characteristics of the sound scattering layer (SSL) and to estimate the density of an euphausiid (Euphausia pacifica) in the SSL, in the northwestern part of the East China Sea. The survey was carried out during July 6-9 2002 at 8 sampling stations for zooplankton. The virtual echogram technique was used to identify E. pacifica from all acoustic scatters. Mean volume backscattering strength difference $(MVBS_{120kHz-38kHz})$ and target strength equation for E. pacifica were derived from the Distorted-wave Born Approximation (DWBA) model. Although vertical migration of the SSL is similar to the general pattern, dispersion at night shows some differences. Estimated mean density using acoustic data ranged from $20.4-221.4\;mg/m^3$ over the whole depth, and $87.1-553.5\;mg/m^3$ in the SSL. The density using the zooplankton net ranged from $0.2-362.4\;mg/m^3$ and was not related to net deploying method. The results from the acoustic and net survey suggest that E. pacifica might be an important zooplankton community in the northwestern part of the East China Sea.

Studies on Estimation of Fish Abundance Using an Echo Sounder ( 2 ) - The Relationship between Acoustic Backscattering Strength and Distribution Density of Fish in a Net Cage- (어군탐지기에 의한 어군량 추정에 관한 기초적 연구 ( 2 ) - 어군의 분포밀도와 초음파산란강도의 관계 -)

  • 이대재
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.27 no.1
    • /
    • pp.13-20
    • /
    • 1991
  • This paper describes the fish-density dependence of the mean backscattering strength with aggregations of encaged, free-swimming fish of known density in relation to the experimental verification of echo-integration technique for estimating the density of fish shoals. In this experiment, various numbers of gold crussian, Carassius burgeri burgeri, with a mean length of 18.5cm and a mean weight of 205.9g, were introduced into a net cage of approximately 0.76m super(3). During the backscattering measurements. the cage was suspended on the sound axis of the 50kHz transducer having a beam width of 33 degrees at -3dB downpoints. The volume backscattering strengths from fish aggregations were measured as a function of fish density. Data acquisition, processing and analysis were performed by means of the microcomputer-based sonar-echo processor including a FFT analyzer. The calibration of echo-sounder system was carried out at field with a steel ball bearing of 38mm in diameter having the target strength of -40.8dB. The dorsal-aspect target strengths on anesthetized specimens of gold crussian used in the cage experiment were measured and compared with the target strength predicted by the fish density-echo energy relationship for aggregations of free-swimming gold crussian in the cage. The results obtained can be summarized as follows: 1. The target strengths in the dorsal aspect on anesthetized specimens of gold crussian, with the mean length of 19.1cm and the mean weight of 210.5g, varied from -40.9dB to -44.8dB with a mean of -42.6dB. This mean target strength did not differ significantly from that predicted by the regression of echo energy on fish density of free-swimming gold crussian in the cage. It suggests that the target-strength measurements on anesthetized fish was valid and can be representative for live, free-swimming fish. 2. The relationship between mean backscattering strength(, dB) and distribution density of gold $crussian(\rho, $ fish/m super(3)) was expressed by the following equation; =-41.9+11 $Log(\rho)$ with a correlation coefficient of 0.97. This result support the existence of a linear relationship between fish density and echo energy, but suggest that this line has steeper slope than the regression by the theory of estimating the density of fish schools.

  • PDF