• 제목/요약/키워드: Mean top height model

검색결과 12건 처리시간 0.07초

E-$\varepsilon$모델을 이용한 삼각 봉우리 주변의 유동과 확산 수치해석(I) (Application of the E-$\varepsilon$turbulence numerical model to a flow and dispersion around triangular ridge( I ))

  • 정상진
    • 한국대기환경학회지
    • /
    • 제10권2호
    • /
    • pp.116-123
    • /
    • 1994
  • The E- $\varepsilon$ turbulence numerical model was applied to a flow around triangular ridge in neutral boundary layer. Scale of cavity region, mean velocity, Reynolds stress and eddy diffusivity were investigated. The height of cavity region was in satifactory agreement with the wind tunnel data while the length of cavity region was underestimated. The man wind velocities outside the cavity region were well Predicted by the model, however in cavity region the mean wind velocities of wind tunnel data were larger than the model results Reynolds stress of cavity region was overestimated by the model. The eddy diffusivity of wake region was strongly modified under the influence of triangular ridge. The local minimum of the eddy diffusivity was occured in the lee of the ridge top.

  • PDF

수로 장치내에서 공동영역 주변의 확산에 관한 실험적 연구 (An experimental investigaion of dispersion around cavity region in water channel)

  • 정상진
    • 한국대기환경학회지
    • /
    • 제9권4호
    • /
    • pp.295-302
    • /
    • 1993
  • The nature of the cavity region and dispersion around trianglular ridge was investigated using model. The artifical neutral boundary layer was simulated in water channel. Two dimensional trianglar ridges, having height of 1.2 cm and various width were placed normal to the flow. Mean velocity with many dimensionless parameters were measured and compared with wind tunnel results by other studies. Using vorticity generator and roughness, the neutral boundary layer was well represented by the water channel. concentration patterns resulting from dye source placed 0.2 cm height above were examined. Narrower the trianglar ridge width resulted in increased amplification factor and the larges amplification factor was observed near downward top of the ridge.

  • PDF

평면 난류 오프셋 제트에 관한 연구 (A Study on the Plane Turbulent Offset Jet)

  • 유정열;강신형;채승기;좌성훈
    • 대한기계학회논문집
    • /
    • 제10권3호
    • /
    • pp.357-366
    • /
    • 1986
  • 본 연구에서는 3공피토우관 및 열선유속계를 사용하여 벽에 평행한 2차원 난류제트의 난류량들을 측정하였고, 스캐니 밸브를 이용하여 벽면아력분포를 측정함 으로써 재순환 영역을 포함한 전체유동장에서의 유동특성을 고찰하였다. 또한 잘 알려진 표준 k-.epsilon. 난류모형 및 유선곡률을 고려한 수정된 k-.epsilon. 난류모형을 이용하여 측정 수치해석을 수행하였다.

큰에디모의 모형을 이용한 높은 레이놀즈 수에서의 사각 기둥 후면의 와열 분석: 풍향과 풍속, 기둥 너비의 영향 (Analysis on Vortex Streets Behind a Square Cylinder at High Reynolds Number Using a Large-Eddy Simulation Model: Effects of Wind Direction, Speed, and Cylinder Width)

  • 한범순;곽경환;백종진
    • 대기
    • /
    • 제27권4호
    • /
    • pp.445-453
    • /
    • 2017
  • This study investigates turbulent flow around a square cylinder mounted on a flat surface at high Reynolds number using a large-eddy simulation (LES) model, particularly focusing on vortex streets behind the square cylinder. Total 9 simulation cases with different inflow wind directions, inflow wind speeds, and cylinder widths in the x- and y-directions are considered to examine the effects of inflow wind direction, speed, and cylinder widths on turbulent flow and vortex streets. In the control case, the inflow wind parallel to the x-direction has a maximum speed of $5m\;s^{-1}$ and the width and height of the cylinder are 50 m and 200 m, respectively. In all cases, down-drafts in front of the cylinder and updrafts, wakes, and vortex streets behind the cylinder appear. Low-speed flow below the cylinder height and high-speed flow above it are mixed behind the cylinder, resulting in strong negative vertical turbulent momentum flux at the boundary. Accordingly, the magnitude of the vertical turbulent momentum flux is the largest near the cylinder top. In the case of an inflow wind direction of $45^{\circ}$, the height of the boundary is lower than in other cases. As the inflow wind speed increases, the magnitude of the peak in the vertical profile of mean turbulent momentum flux increases due to the increase in speed difference between the low-speed and high-speed flows. As the cylinder width in the y-direction increases, the height of the boundary increases due to the enhanced updrafts near the top of the cylinder. In addition, the magnitude of the peak of the mean turbulent momentum flux increases because the low-speed flow region expands. Spectral analysis shows that the non-dimensional vortex generation frequency in the control case is 0.2 and that the cylinder width in the y-direction and the inflow wind direction affect the non-dimensional vortex generation frequency. The non-dimensional vortex generation frequency increases as the projected width of the cylinder normal to the inflow direction increases.

A numerical study of a confined turbulent wall jet with an external stream

  • Yan, Zhitao;Zhong, Yongli;Cheng, Xu;McIntyre, Rory P.;Savory, Eric
    • Wind and Structures
    • /
    • 제27권2호
    • /
    • pp.101-109
    • /
    • 2018
  • Wall jet flow exists widely in engineering applications, including the simulation of thunderstorm downburst outflows, and has been investigated extensively by both experimental and numerical methods. Most previous studies focused on the scaling laws and self-similarity, while the effect of lip thickness and external stream height on mean velocity has not been examined in detail. The present work is a numerical study, using steady Reynolds-Averaged Navier Stokes (RANS) simulations at a Reynolds number of $3.5{\times}10^4$, of a turbulent plane wall jet with an external stream to investigate the influence of the wall jet domain on downstream development of the flow. The comparisons of flow characteristics simulated by the Reynolds stress turbulence model closure (Stress-omega, SWRSM) and experimental results indicate that this model may be considered reasonable for simulating the wall jet. The confined wall jet is further analyzed in a parametric study, with the results compared to the experimental data. The results indicate that the height and the width of the wind tunnel and the lip thickness of the jet nozzle have a great effect on the wall jet development. The top plate of the tunnel does not confine the development of the wall jet within 200b of the nozzle when the height of the tunnel is more than 40b (b is the height of jet nozzle). The features of the centerline flow in the mid plane of the 3D numerical model are close to those of the 2D simulated plane wall jet when the width of the tunnel is more than 20b.

임분(林分) 생장(生長) 모델의 모수(母數) 추정(推定) 능력(能力) 향상(向上)을 위(爲)한 생장(生長) 측정간격(測定間隔)의 선택(選擇) (Selection of Growth projection Intervals for Improving Parameter Estimation of Stand Growth Model)

  • 이상현
    • 한국산림과학회지
    • /
    • 제87권1호
    • /
    • pp.40-49
    • /
    • 1998
  • 본 연구는 보다 정확한 모수(母數) 추정을 통한 생장(生長)모델의 현실성을 향상시키는데 이용되는 생장 측정간격(임목의 측정 초기 연령 $T_1$과 재측정 연령 $T_2$의 기간)의 적합한 조합을 선택하기 위한 계획을 제공하는데 목적이 있다. 다양한 생장식을 데이터에 적용한 후 가장 적합한 것으로 판정된 생장식을 분석에 이용하였다. 여러 생장식을 분석한 결과 최적의 생장식으로 판명된 더미 변수를 포함하는 변형 Schumacher 방정식을 임분 흉고단면적(胸高斷面績) 생장식과 평균수고(平均樹高) 생장식을 얻기 위하여 이용하였다. 그리고 사용된 자료는 뉴질랜드 남섬 전역에서 측정된 업송(業松)(Pseudotsuga menziesii Mirb.Franco)의 생장 측정기간이 변형되지 않은 데이터와 모든 가능한 생장 측정기간을 포함하는 변형된 2종류의 데이터이었다. 단기의 측정기간에서부터 장기의 측정기간의 범위를 포함하는 데이터(모든 가능한 생장 측정기간을 포함하는 데이터)를 사용할 때 흉고단면적 생장식과 임분 평균수고 생장식에서 모수 추정의 정확성이 증가되는 것이 발견되었다.

  • PDF

Aerodynamics of tapered and set-back buildings using Detached-eddy simulation

  • Sharma, Ashutosh;Mittal, Hemant;Gairola, Ajay
    • Wind and Structures
    • /
    • 제29권2호
    • /
    • pp.111-127
    • /
    • 2019
  • The tapered and set-back type of unconventional designs have been used earlier in many buildings. These shapes are aerodynamically efficient and offer a significant amount of damping against wind-induced forces and excitations. Various studies have been conducted on these shapes earlier. The present study adopts a hybrid approach of turbulence modelling i.e., Detached-eddy Simulation (DES) to investigate the effect of height modified tapered and set-back buildings on aerodynamic forces and their sensitivity towards pressure. The modifications in the flow field around the building models are also investigated and discussed. Three tapering ratios (T.R.=(Bottom width- Top width)/Height) i.e., 5%, 10%, 15% are considered for tapered and set-back buildings. The results show that, mean and RMS along-wind and across-wind forces are reduced significantly for the aerodynamically modified buildings. The extent of reduction in the forces increases as the taper ratio is increased, however, the set-back modifications are more worthwhile than tapered showing greater reduction in the forces. The pressure distribution on the surfaces of the buildings are analyzed and in the last section, the influence of the flow field on the forces is discussed.

대류가 유도하는 중력파 항력의 모수화가 GDAPS에 미치는 영향 (Impact of a Convectively Forced Gravity Wave Drag Parameterization in Global Data Assimilation and Prediction System (GDAPS))

  • 김소영;전혜영;박병권;이해진
    • 대기
    • /
    • 제16권4호
    • /
    • pp.303-318
    • /
    • 2006
  • A parameterization of gravity wave drag induced by cumulus convection (GWDC) proposed by Chun and Baik is implemented in the KMA operational global NWP model (GDAPS), and effects of the GWDC on the forecast for July 2005 by GDAPS are investigated. The forecast result is compared with NCEP final analyses data (FNL) and model's own analysis data. Cloud-top gravity wave stresses are concentrated in the tropical region, and the resultant forcing by the GWDC is strong in the tropical upper troposphere and lower stratosphere. Nevertheless, the effect of the GWDC is strong in the mid- to high latitudes of Southern Hemisphere and high latitudes of Northern Hemisphere. By examining the effect of the GWDC on the amplitude of the geopotential height perturbation with zonal wavenumbers 1-3, it is found that impact of the GWDC is extended to the high latitudes through the change of planetary wave activity, which is maximum in the winter hemisphere. The GWDC reduces the amplitude of zonal wavenumber 1 but increases wavenumber 2 in the winter hemisphere. This change alleviates model biases in the zonal wind not only in the lower stratosphere where the GWDC is imposed, but also in the whole troposphere, especially in the mid- to high latitudes of Southern Hemisphere. By examining root mean square error, it is found that the GWDC parameterization improves GDAPS forecast skill in the Southern Hemisphere before 7 days and partially in the Northern Hemisphere after about 5 days.

국지성 집중호우 감시를 위한 천리안위성 2A호 대류운 전조 탐지 알고리즘 개발 (Development of GK2A Convective Initiation Algorithm for Localized Torrential Rainfall Monitoring)

  • 박혜인;정성래;박기홍;문재인
    • 대기
    • /
    • 제31권5호
    • /
    • pp.489-510
    • /
    • 2021
  • In this paper, we propose an algorithm for detecting convective initiation (CI) using GEO-KOMPSAT-2A/advanced meteorological imager data. The algorithm identifies clouds that are likely to grow into convective clouds with radar reflectivity greater than 35 dBZ within the next two hours. This algorithm is developed using statistical and qualitative analysis of cloud characteristics, such as atmospheric instability, cloud top height, and phase, for convective clouds that occurred on the Korean Peninsula from June to September 2019. The CI algorithm consists of four steps: 1) convective cloud mask, 2) cloud object clustering and tracking, 3) interest field tests, and 4) post-processing tests to remove non-convective objects. Validation, performed using 14 CI events that occurred in the summer of 2020 in Korean Peninsula, shows a total probability of detection of 0.89, false-alarm ratio of 0.46, and mean lead-time of 39 minutes. This algorithm can be useful warnings of rapidly developing convective clouds in future by providing information about CI that is otherwise difficult to predict from radar or a numerical prediction model. This CI information will be provided in short-term forecasts to help predict severe weather events such as localized torrential rainfall and hail.

다단 환원형 유동층에서 J-valve의 운전변수에 따른 고체 흐름량 및 기체 우회 (Solid Flow Rate and Gas Bypassing with Operating Variables of J-valve in Multistage Annular Type Fluidized Beds)

  • 흥윤석;강경수;박주식;이동현
    • 청정기술
    • /
    • 제17권1호
    • /
    • pp.62-68
    • /
    • 2011
  • 다단 환원형 유동층 반응기(상승관: $0.01{\times}0.025{\times}2.8m^3$, J-valve: $0.009{\times}0.015m^2$)에서의 수력학적 특성을 연구하였다. 층물질로는 glass beads($d_p=101{\mu}m$, ${\rho}_b=1,590kg/m^3$, $U_{mf}=1.25{\times}10^{-2}m/s$, Galdart B)를 사용하였다. Batch 상태에서 고체흐름량을 측정하기 위하여 전자저울을 사용하여 누적된 무게로 계산하였다. 연속공정에서는 고체순환량를 측정하기 위하여 고체가 순환상태에서 사이클론 하단의 3-way 밸브를 이용하여 일정시간에 누적된 무게로 계산하였다. 또한 정상상태에서 가열된 입자가 열전대를 통과하는 시간을 측정하여 고체순환량을 계산하였다. 고체의 흐름량은 주입 기체의 유속($1.2{\sim}2.6U_{mf}$)과 층높이(z, 0.24~0.68 m)가 증가함에 따라 2.2 에서 23.4 kg/s로 증가하였다. 이때 고체체류시간은 440에서 1,438 s까지 변화하였다. 상승관내의 고체 체류량을 확인하기 위하여 각 구간에서의 압력강하를 측정하여 고체 체류량을 계산하였다. 본 연구에서 얻어진 고체체류량 분포는 end effect를 갖는 exponential decay model 의 형태로 나타났다. 상단 유동층에서 중단 유동층으로의 기체 우회을 확인하기 위하여 상단 유동층으로 주입되는 공기에 일정 조성의 $CO_2$ 추적기체를 주입한 후, 기체분석기를 이용하여 중단 유동층의 배출기체중 $CO_2$가 우회되는 양을 측정하였다. 측정된 기체우회(gas bypassing)양은 2.6% 미만으로 그 영향이 크지 않는 것으로 판단하였다.