• Title/Summary/Keyword: Mean kinetic energy balance

Search Result 5, Processing Time 0.018 seconds

The Effect of Building Morphology on Sea Breeze Penetration over the Kanto Plain - Analysis of Mean Kinetic Energy Balance of Moving Control Volume along Sea Breeze -

  • Sato, Taiki;Ooka, Ryozo;Murakami, Shuzo
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.2
    • /
    • pp.73-80
    • /
    • 2012
  • In order to use sea breezes to counter the heat island phenomena, i.e. to promote urban ventilation, it is necessary to clarify the effect of building morphology and height on large-scale wind fields. In this study, the sea breeze in the vicinity of the Kanto Plain in Japan is simulated using a mesoscale meteorological model incorporating an urban canopy model, and the inland penetration of sea breezes is accurately reproduced. Additionally, a mean kinetic energy balance within a domain (Control Volume; CV) moving along the sea breeze is analysed. From the results, it is clarified that the sea breeze is interrupted by the resistance and turbulence caused by buildings at the centre of Tokyo. The interruption effect is increased in accordance with the height of these buildings. On the other hand, adverse pressure gradients interrupt in the internal region.

Transition of Turbulent Kinetic Energy Through a Serial Unit of Straight-Duct, Contraction and Free-Jet (상류유동전개부, 수축부 및 자유분사류로 이어지는 유동장에서의 난류에너지 천이에 대한 연구)

  • 한용운;남경덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2368-2375
    • /
    • 1992
  • The transition of turbulent kinetic energy(TKE) balance along the centerline of the flow unit, which is composed of straight-duct, contraction and free-jet, has been investigated by the hot-wire anemometry. It is found that the mean turbulent kinetic energy is balanced by the dissipation in the internal flow region ; by the production and the dissipation, through contraction ; and by the dissipation, in initial region(X〈8D) of free-jet. But in the developing region (8D〈X〈20D) it is balanced by all of the three(ie, diffusion, production and dissipation). Finally, in the downstream of free-jet, the mean TKE is balanced again by dissipation like as the beginning. The decay-laws along the centerline are checked in the region of free jet as well as in the straightduct. After the developing region of free-jet also exist the decay-laws, the exponent of the axial turbulence being bigger than of the radial.

An Experiment on the Effects of Free Stream Turbulence Intensity on the Backward-Facing Step Flow (자유흐름 난류강도가 후향계단유동에 미치는 영향에 대한 실험)

  • 김사량;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2297-2307
    • /
    • 1995
  • An experimental study on the structure of a separated shear layer downstream of the backward-facing step has been performed by examining mean flow and turbulent quantities in terms of free stream turbulence. When free stream turbulence exists, the entrainment rate of the separated shear layer and the flow rate in the recirculation region are enhanced, resulting in shorter reattachment length. The production and diffusion terms in the turbulent kinetic energy balance are shown to increase more than the dissipation term does. Rapid decrease of the pressure-strain term in the shear stress balance implies the enhancement of the three-dimensional motion by free stream turbulence.

Study on centerline turbulent structures of circular contraction and expansion ducts (수축부와 확대부의 중심 유동에서 나타나는 대칭적 난류구조에 관한 연구)

  • Han,Yong-Un;Lee, Jang-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.2
    • /
    • pp.221-228
    • /
    • 1998
  • In order to look into the comparative flow characteristics between a circular contraction duct and a circular expansion duct the both centerline turbulent structures have been investigated by the hot wire anemometry. Both of the contraction and the expansion have Morel type contours. Means, turbulences, and triple moments have been measured for the turbulent kinetic energy budgets along their centerlines. It is resulted that mean velocities of both have much deviated from theoretical values calculated by one-dimensional continuity considerations, and that for the same upstream condition, the expansion maintains the isotropy in general while the contraction maintains a severe anisotropy through the whole duct. The mean transport of the TKE along the expansion is willing to balance mostly with the dissipation in the TKE budgets while that along the contraction is balanced with the production in the turbulent kinetic energy equation.

Physical Structure of Eddies in the Southwestern East Sea (동해남서해역 와류의 물리적구조)

  • 이흥재;변상경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.170-183
    • /
    • 1995
  • Eddies and surface current field in the southwestern part of the East Sea were investigated using satellite-tracked drifters, CTD, and ADCP from November 1992 to September 1993. Trajectories of surface drifters provided information for the first time on the meandering motion of the East Korean Warm Current in the Ullung Basin (referred as UB) and clearly indicated the existence of cyclonic and anticyclonic eddies of various scales. Anticyclonic eddies persisting for a relatively long period were observed in UB and the southwestern corner of the Northern (Japan) Basin (SNB), while a cyclonic eddy was found in the coastal area between Sokcho and Donghae during the summer. Analysis shows that the eddy in UB behaved as a stationary eddy at least during the observation period and the cyclonic eddy was closely related to the existence of a cold water mass. The anticyclonic eddy in SNB was larger than that in UB, but much elongated in shape. The eddy in UB is characteristic of major and minor axes of about 120 and 70 km, revolution period of 13.6 days, mean swirl velocity of about 24 cm/s, and mean eddy kinetic energy of 392 cm$\^$2//s$\^$2/. The eddy in SNB is described as follows; major and minor axes of 168 and 86 km, period of 14.9 days, mean swirl velocity of 29 cm/s and mean eddy kinetic energy of 629 cm$\^$2//s$\^$2/. The mean translational speed is about 3 cm/s for both eddies. The agreement of the surface current pattern in UB observed by ADCP with the geostrophic flow pattern may suggest that the eddy in UB was nearly in geostrophic balance. The eddy was found to be strongly bottom-controlled.

  • PDF