• 제목/요약/키워드: Mean field equation

검색결과 150건 처리시간 0.03초

2차원 온배수 난류모형의 비교연구 (A Comparative Study of 2-Dimensional Turbulence Models for Thermal Discharge)

  • 최흥식
    • 한국수자원학회논문집
    • /
    • 제32권3호
    • /
    • pp.225-235
    • /
    • 1999
  • 가로흐름이 존재하는 수역으로 방출되는 온배수 해석에 3가지 난류모형의 사용성 평가를 위해서 근역 2차원 수치모형을 개발하였다. 적용한 난류모형은 2-방정식 난류모형인 {{{{ { k}_{ } }}}}-$\varepsilon$ 및 {{{{ { k}_{ } }}}}-ι 난류모형과 {{{{ { k}_{ } }}}}-$\varepsilon$ 난류모형에 부력생성 항 및 난류 열 플럭스 항 결정을 위한 변동온도 평균자승항 및 이의 감쇠율에 대한 전달 방정식을 추가한 4-방정식 난류모형이다. 개발된 모형은 간단한 단면을 갖는 개수로 정류 경우에 대해 적용하였으며, 계산된 결과는 기존의 실험결과와 비교적 잘 일치하였다. 4-방정식 난류모형에 의한 결과가 2-방정식에 의한 결과보다 부력에 의한 횡방향의 중력확장을 잘 나타내었으며, 흐름 양상의 계산에는 3가지 경우 모두 유사하게 흐름을 재현함을 보였다.

  • PDF

정적 연소실내 난류 예혼합화염 전파의 시뮬레이션 (Simulation of Turbulent Premixed Flame Propagation in a Closed Vessel)

  • 권세진
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1510-1517
    • /
    • 1995
  • A theoretical method is described to simulate the propagation of turbulent premixed flames in a closed vessel. The objective is to develop and test an efficient technique to predict the propagation speed of flame as well as the geometric structure of the flame surfaces. Flame is advected by the statistically generated turbulent flow field and propagates as a wave by solving twodimensional Hamilton-Jacobi equation. In the simulation of the unburned gas flow field, following turbulence properties were satisfied: mean velocity field, turbulence intensities, spatial and temporal correlations of velocity fluctuations. It is assumed that these properties are not affected by the expansion of the burned gas region. Predictions were compared with existing experimental data for flames propagating in a closed vessel charged with hydrogen/air mixture with various turbulence intensities and Reynolds numbers. Comparisons were made in flame radius growth rate, rms flame radius fluctuations, and average perimeter and fractal dimensions of the flame boundaries. Two dimensional time dependent simulation resulted in correct trends of the measured flame data. The reasonable behavior and high efficiency proves the usefulness of this method in difficult problems of flame propagation such as in internal combustion engines.

모형 가스터빈 연소기에서 당량비 변화에 따른 연소특성에 관한 LES 연구 (LES studies on combustion characteristic with equivalence ratios in a model gas turbine combustor)

  • 황철홍;이현용;이창언
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.242-250
    • /
    • 2006
  • The impacts of equivalence ratio on the flow structure and flame dynamics in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

선회 예혼합연소기에서 당량비 변화에 따른 유동구조 및 화염특성에 관한 LES 연구 (LES Studies on Flow Structure and Flame Characteristic with Equivalence Ratios in a Swirling Premixed Combustor)

  • 황철홍;김세원;이창언
    • 한국연소학회지
    • /
    • 제11권4호
    • /
    • pp.27-35
    • /
    • 2006
  • The impacts of equivalence ratio on flow structure and flame dynamic in a model gas turbine combustor are investigated using large eddy simulation(LES). Dynamic k-equation model and G-equation flamelet model are employed as LES subgrid model for flow and combustion, respectively. As a result of mean flow field for each equivalence ratio, the increase of equivalence ratio brings about the decrease of swirl intensity through the modification of thermal effect and viscosity, although the same swirl intensity is imposed at inlet. The changes of vortical structure and turbulent intensity etc. near flame surface are occurred consequently. That is, the decrease of equivalence ratio can leads to the increase of heat release fluctuation by the more increased turbulent intensity and fluctuation of recirculation flow. In addition, the effect of inner vortex generated from vortex breakdown on the heat release fluctuation is increased gradually with the decrease of equivalence ratio. Finally, it can be identified that the variations of vortical structure play an important role in combustion instability, even though the small change of equivalence ratio is occurred.

  • PDF

Optimal stiffness distribution in preliminary design of tubed-system tall buildings

  • Alavi, Arsalan;Rahgozar, Reza
    • Structural Engineering and Mechanics
    • /
    • 제65권6호
    • /
    • pp.731-739
    • /
    • 2018
  • This paper presents an optimal pattern for distributing stiffness along a framed tube structure through an analytic equation, which may be used during the preliminary design stage. Most studies in this field are computationally intensive and time consuming, while a hand-calculation method, as presented here, is a more suitable tool for sensitivity analyses and parametric studies. Approach in development of the analytic model is to minimize the mean compliance (external work) for a given volume of material. A variational statement of the problem is made, and a specified deformation-profile is obtained as the necessary condition for a minimum; enforcing this condition, stiffness is then computed. Due to some near-zero values for stiffness, the problem is modified by considering a lower bound constraint. To deal with this constraint, the design domain is assumed to be divided into two zones of constant stiffness and constant curvature; and the problem is restated in terms of these concepts. It will be shown that this methodology allows for easy computation of stiffness through an analytic and dimensionless equation, valid in any system of units. To show practicality of the proposed method, a tubed-system structure with uniform stiffness distribution is redesigned using the proposed model. Comparative analyses of the results reveal that in addition to simplicity of the proposed method, it provides a rather high degree of accuracy for real-world problems.

원형튜브내에서 이동중인 고체입자층의 열전달 특성연구 (Heat Transfer to a Downward Moving Solid Particle Bed Through a Circular Tube)

  • 이금배;박상일
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1551-1558
    • /
    • 1994
  • An experiment was conducted to investigate whether an equation of heat transfer coefficient derived form energy equation of two-phase plug flow can be actually applied to the industrial field. The heat is constantly transfered to the sand beds from the wall of heat exchanger while the sand moves down through cylindrical heat exchanger by gravity from feed hooper. To increase heat transfer, turbulators such as glass ball and steel pipe packings were used. In addition, the experiment in the case of fluidizing the sand beds was also carried out. The temperatures of the sand beds and the wall were measured along the heat exchanger axis. The density and porosity of the sand beds were also measured. The deviations of the mean velocity of sands from the velocity on the wall surface because of the slip conditions on the wall were negligible (within 3%). The heat transfer coefficients when the turbulators were used and when the sand beds were fluidized were found to be much greater than those of the plain plug flow.

Germination Percentages of Different Types of Sweet Corn in Relation to Harvesting Dates

  • Lee, Myoung-Hoon
    • 한국작물학회지
    • /
    • 제45권1호
    • /
    • pp.55-58
    • /
    • 2000
  • Germination of sweet and super sweet corn is lower than normal corn due to the higher sugar and lower starch contents of kernels. Sweet corn seeds are easily deteriorated in the field under the unfavorable condition, therefore it is important to identify the optimal harvesting time for seed production. This trial was conducted to investigate the responses of germination percentage of shrunken-2(sh2), brittle(bt), sugary(su), and sugary enhancer(se) hybrids in relation to harvesting dates. Eight hybrids of four different gene sweet corns were harvested at 15, 20, 25, 30, 35, 40, 45, and 50 days after silking(DAS). Germination test was performed using paper towel method. Mean germination percentages across eight hybrids showed the highest value at 45 DAS. There were significant differences among genes and within gene for germination. Shrunken-2 hybrid Mecca was higher than su hybrids for germination, indicating that sh2 would not be poorer than su Late harvesting beyond the optimal harvesting date might not be desirable because of more lodging and ear rots. Theoretical optimal harvesting date estimated from the regression equation was 40.9 DAS, however, practical date for harvesting would be a few days later than the estimated date if seedling vigor might be considered. Kernel dry weight per ear showed similar response to germination. Regression equation showed the highest kernel dry weight at 40.7 DAS. Significant correlations between kernel dry weight and germination were observed, impling that kernel dry matter accumulation would be an important factor for germination.

  • PDF

An Isothermal Mganetohydrodynamic Code and Its Application to the Parker Instability

  • KIM JONGSOO;RYU DONGSU;JONES T. W.;HONG S. S.
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.281-283
    • /
    • 2001
  • As a companion to an adiabatic version developed by Ryu and his coworkers, we have built an isothermal magnetohydrodynamic code for astrophysical flows. It is suited for the dynamical simulations of flows where cooling timescale is much shorter than dynamical timescale, as well as for turbulence and dynamo simulations in which detailed energetics are unimportant. Since a simple isothermal equation of state substitutes the energy conservation equation, the numerical schemes for isothermal flows are simpler (no contact discontinuity) than those for adiabatic flows and the resulting code is faster. Tests for shock tubes and Alfven wave decay have shown that our isothermal code has not only a good shock capturing ability, but also numerical dissipation smaller than its adiabatic analogue. As a real astrophysical application of the code, we have simulated the nonlinear three-dimensional evolution of the Parker instability. A factor of two enhancement in vertical column density has been achieved at most, and the main structures formed are sheet-like and aligned with the mean field direction. We conclude that the Parker instability alone is not a viable formation mechanism of the giant molecular clouds.

  • PDF

강우-지하수위 상관성 분석을 통한 사질토층의 수리전도도 산정 (Determination of Hydraulic Conductivities in the Sandy Soil Layer through Cross Correlation Analysis between Rainfall and Groundwater Level)

  • 박승혁;손두기;정교철
    • 지질공학
    • /
    • 제29권3호
    • /
    • pp.303-314
    • /
    • 2019
  • 얕은 대수층에서 매우 복잡한 함양과정을 거치는 지하수의 함양은 지표와 지하매질의 투수성에 의해 상당한 영향을 받는다. 투수성은 고유투수계수(intrinsic permeability)와 수리전도도(hydraulic conductivity)의 두 가지 개념으로 설명되며 이중 지표매질의 특성만으로 수리전도도를 구하려는 많은 연구가 이루어졌다. 본 연구에서는 경주지역 지하수기초조사에서 수행된 미고결퇴적물의 입도분포곡선과 강우-지하수위 교차상관분석을 토대로 회귀식을 사용하여 강우-지하수위 교차상관분석을 통한 수리전도도 산정식을 제안하고 실제현장에서 수행한 대수성 시험결과와 비교하여 그 적용성을 검토하였다. 그 결과 사질토 기반 충적층대수층에서 Zunker의 경험식에서 산정된 수리전도도와 강우-지하수위 최대 교차상관계수의 상관식이 자연로그형태로 증가하면서 결정계수 0.95 이상으로 매우 큰 상관성을 나타내었고 이 회귀식을 다른 관측공에 적용한 결과 실제 현장에서 수행한 대수성시험 결과와 평균제곱근오차가 2.83%로 나타나 강우-지하수위 모니터링 자료만으로 매우 신뢰할 만한 수리전도도를 추정할 수 있었다.

단일 나노입자의 다중 물리량의 평가를 위한 입자 모션 트랙킹 알고리즘 (Particle-motion-tracking Algorithm for the Evaluation of the Multi-physical Properties of Single Nanoparticles)

  • 박예은;강지윤;박민수;노효웅;박홍식
    • 센서학회지
    • /
    • 제31권3호
    • /
    • pp.175-179
    • /
    • 2022
  • The physical properties of biomaterials are important for their isolation and separation from body fluids. In particular, the precise evaluation of the multi-physical properties of single biomolecules is essential in that the correlation between physical and biological properties of specific biomolecule. However, the majority of scientific equipment, can only determine specific-physical properties of single nanoparticles, making the evaluation of the multi-physical properties difficult. The improvement of analytical techniques for the evaluation of multi-physical properties is therefore required in various research fields. In this study, we developed a motion-tracking algorithm to evaluate the multi-physical properties of single-nanoparticles by analyzing their behavior. We observed the Brownian motion and electric-field-induced drift of fluorescent nanoparticles injected in a microfluidic chip with two electrodes using confocal microscopy. The proposed algorithm is able to determine the size of the nanoparticles by i) removing the background noise from images, ii) tracking the motion of nanoparticles using the circular-Hough transform, iii) extracting the mean squared displacement (MSD) of the tracked nanoparticles, and iv) applying the MSD to the Stokes-Einstein equation. We compared the evaluated size of the nanoparticles with the size measured by SEM. We also determined the zeta-potential and surface-charge density of the nanoparticles using the extracted electrophoretic velocity and the Helmholtz-Smoluchowski equation. The proposed motion-tracking algorithm could be employed in various fields related to biomaterial analysis, such as exosome analysis.