• Title/Summary/Keyword: Mean Flow Coefficient

Search Result 344, Processing Time 0.03 seconds

Large Eddy Simulation of Flow around Twisted Offshore Structure with Drag Reduction and Vortex Suppression (와류감쇠 및 저항저감형 나선형 해양 구조물 주위 유동 LES 해석)

  • Jung, Jae-Hwan;Yoon, Hyun-Sik;Choi, Chang-Young;Chun, Ho-Hwan;Park, Dong-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.440-446
    • /
    • 2012
  • A twisted cylinder has been newly designed by rotating the elliptic cross section along the spanwise direction in order to reduce the drag and vorticies in wake region. The flow around the twisted cylinder at a subcritical Reynolds number (Re) of 3000 is investigated to analyze the effect of twisted spiral pattern on the drag reduction and vortex suppression using large eddy simulation (LES). The instantaneous wake structures of the twisted cylinder are compared with those of a circular and a wavy cylinder at the same Re. The shear layer of the twisted cylinder covering the recirculation region is more elongated than that of the circular and the wavy cylinder. Successively, vortex shedding of the twisted cylinder is considerably suppressed, compared with those of the circular and the wavy cylinder. Consequently, the mean drag coefficient and the fluctuating lift of the twisted cylinder are less than those of the circular and the wavy cylinder.

Impacts of Chemical Heterogeneities in Landfill Subsurface Formations on the Transport of Leachate (매립지반의 화학적 불균질성이 침출수 이동에 미치는 영향)

  • Lee Kun-Sang
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.5
    • /
    • pp.1-8
    • /
    • 2006
  • The objective of this study is to assess impacts of sorption heterogeneity on the transport of leachate leaked from unlined landfill sites and is accomplished by examining the results from a series of Monte-Carlo simulations. For random distribution coefficient ($K_{d}$) fields with four different levels of heterogeneity ranging from homogeneous to highly heterogeneous, the transport of leachate was investigated by linking a saturated flow model with a contaminant transport model. Impacts of a chemical heterogeneity were evaluated using point statistics values such as mean, standard deviation, and coefficient of variation of the concentration obtained at monitoring wells from 100 Monte-Carlo trials. Inspection of point statistics shows that the distribution of distribution coefficient in the landfill site proves to be an important parameter in controlling leachate concentrations. In comparison to homogeneous sorption, heterogeneous $K_{d^-}$ fields produce the variability in the leachate concentration for different realizations. The variability increases significantly as the variance in the $K_{d^-}$ field and the travel time between source and monitoring well increase. These outcomes indicate that use of a constant homogeneous $K_{d}$ value for predicting the transport of leachate can result in significant error, especially when variability in $K_{d}$ is high.

Studies on the Overflow from Torrential Stream -A Case Study at the Samsung-cheon in Mt. Kwanak- (야계(野溪)의 월류발생(越流發生)에 관(關)한 연구(硏究) -관악산(冠岳山) 삼성천(三聖川)에서의 시험사례(試驗事例)-)

  • Woo, Bo Myeong;Kim, Kyong Ha;Jeong, Do Hyeon
    • Journal of Korean Society of Forest Science
    • /
    • v.77 no.3
    • /
    • pp.269-275
    • /
    • 1988
  • To investigate the cause of overflow in the torrential stream, the estimated peak flow of run-off and the maximum tarring capacity of the stream were measured at the upstream of Samsung-cheon located in Kwanak Aboretum during July, 1987. The results obtained from this study could be summarized as follows : 1. The surveyed catchment area was 477ha, which was 116 of the designed area (410ha) by the plan. 2. The maximum rainfall intensity measured was 99.5mm/hr and was almost same as the designed intensity(100mm/hr). 3. The surveyed run-off coefficient was 0.672 that was about twice as much as designed one(0.35). 4. The surveyed peak flow of run-off was $88.59m^3/sec$, 222% as large the designed one($39.9m^3/sec$). 5. The designed cross-sectional area of the stream was $17.25m^2$, which was 68% of the designed one$25.43m^2$. 6. The surveyed hydraulic mean radius was 0.94m, which was shorter than the designed one(1.28m). 7. The surveyed mean stream-bed gradient(0.998%) was almost the same as the designed one(1.00%). 8 The surveyed maximum velocity of flow passing through the stream was 2.87m/sec, 78.0 of the designed one(3.68m/sec). 9 The surveyed run-off capacity of the stream was $49.51m^3/sec$, 53% of the designed one ($93.5m^3/sec$).

  • PDF

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

Mobility of Water and Solute Intluenced by PHYSICAL PROCESSES in field Soils (포장에서 물리적 진행과정에 의해 영향을 받은 물질과 수분의 이동성)

  • Doug Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.73-81
    • /
    • 1996
  • The self-diffusion coefficients of chloride and tritiated water ranged from 4.8 $\times$ 10-7 to 7.2 $\times$ 10-7 cm2/sec and 5.5 $\times$ 10-5 to 1.6 $\times$ 10-4 cm2/sec for three different depths of soil constituents at about 50% water content by volume, respectively Mobility of solute and water was conducted under steady-state flow conditions in a field soil consisting of 70 cm of clay to silty clay over a medium sand. A steady-state water flow conditions was maintained by applying irrigation water at a constant flux of 2cm per day. The water labeled with chloride and tritium was leached into the plot during the steady-state condition for 87 days. The positions of tritium and chloride as a function of soil depth and the time was measured by extracting samples of the soil solution with suction probes. Extremes in solute displacement occurred at equal and different depths within the plot. An analysis of these measurements indicated the observations of the pore-water velocity and the apparent diffusion coefficient were log normally disturbed. Twenty-four soil suction probes, used to identify the rate at which a solute was displaced in the soil, will yield an estimate of the mean pore-water velocity of this soils within a range of approximately 5% of its true value providing the effects of potential solute-soil interaction are taken into account.

  • PDF

Derivation of the Synthetic Unit Hydrograph Based on the Watershed Characteristics (유역특성에 의한 합성단위도의 유도에 관한 연구)

  • 서승덕
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.1
    • /
    • pp.3642-3654
    • /
    • 1975
  • The purpose of this thesis is to derive a unit hydrograph which may be applied to the ungaged watershed area from the relations between directly measurable unitgraph properties such as peak discharge(qp), time to peak discharge (Tp), and lag time (Lg) and watershed characteristics such as river length(L) from the given station to the upstream limits of the watershed area in km, river length from station to centroid of gravity of the watershed area in km (Lca), and main stream slope in meter per km (S). Other procedure based on routing a time-area diagram through catchment storage named Instantaneous Unit Hydrograph(IUH). Dimensionless unitgraph also analysed in brief. The basic data (1969 to 1973) used in these studies are 9 recording level gages and rating curves, 41 rain gages and pluviographs, and 40 observed unitgraphs through the 9 sub watersheds in Nak Oong River basin. The results summarized in these studies are as follows; 1. Time in hour from start of rise to peak rate (Tp) generally occured at the position of 0.3Tb (time base of hydrograph) with some indication of higher values for larger watershed. The base flow is comparelatively higher than the other small watershed area. 2. Te losses from rainfall were divided into initial loss and continuing loss. Initial loss may be defined as that portion of storm rainfall which is intercepted by vegetation, held in deppression storage or infiltrated at a high rate early in the storm and continuing loss is defined as the loss which continues at a constant rate throughout the duration of the storm after the initial loss has been satisfied. Tis continuing loss approximates the nearly constant rate of infiltration (${\Phi}$-index method). The loss rate from this analysis was estimated 50 Per cent to the rainfall excess approximately during the surface runoff occured. 3. Stream slope seems approximate, as is usual, to consider the mainstreamonly, not giving any specific consideration to tributary. It is desirable to develop a single measure of slope that is representative of the who1e stream. The mean slope of channel increment in 1 meter per 200 meters and 1 meter per 1400 meters were defined at Gazang and Jindong respectively. It is considered that the slopes are low slightly in the light of other river studies. Flood concentration rate might slightly be low in the Nak Dong river basin. 4. It found that the watershed lag (Lg, hrs) could be expressed by Lg=0.253 (L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the watershed characteristics, L and Lca. 5. Expression for basin might be expected to take form containing theslope as {{{{ { L}_{g }=0.545 {( { L. { L}_{ca } } over { SQRT {s} } ) }^{0.346 } }}}} For the logarithms, the correlation coefficient for Lg was 0.97 which defined that Lg is closely related with the basin characteristics too. It should be needed to take care of analysis which relating to the mean slopes 6. Peak discharge per unit area of unitgraph for standard duration tr, ㎥/sec/$\textrm{km}^2$, was given by qp=10-0.52-0.0184Lg with a indication of lower values for watershed contrary to the higher lag time. For the logarithms, the correlation coefficient qp was 0.998 which defined high sign ificance. The peak discharge of the unitgraph for an area could therefore be expected to take the from Qp=qp. A(㎥/sec). 7. Using the unitgraph parameter Lg, the base length of the unitgraph, in days, was adopted as {{{{ {T}_{b } =0.73+2.073( { { L}_{g } } over {24 } )}}}} with high significant correlation coefficient, 0.92. The constant of the above equation are fixed by the procedure used to separate base flow from direct runoff. 8. The width W75 of the unitgraph at discharge equal to 75 per cent of the peak discharge, in hours and the width W50 at discharge equal to 50 Per cent of the peak discharge in hours, can be estimated from {{{{ { W}_{75 }= { 1.61} over { { q}_{b } ^{1.05 } } }}}} and {{{{ { W}_{50 }= { 2.5} over { { q}_{b } ^{1.05 } } }}}} respectively. This provides supplementary guide for sketching the unitgraph. 9. Above equations define the three factors necessary to construct the unitgraph for duration tr. For the duration tR, the lag is LgR=Lg+0.2(tR-tr) and this modified lag, LgRis used in qp and Tb It the tr happens to be equal to or close to tR, further assume qpR=qp. 10. Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.Q} over { { T}_{p } } }}}} or {{{{ { q}_{p } = { 0.21A.Q} over { { T}_{p } } }}}} The constant 0.21 is defined to Nak Dong River basin. 11. The base length of the time-area diagram for the IUH routing is {{{{C=0.9 {( { L. { L}_{ca } } over { SQRT { s} } ) }^{1/3 } }}}}. Correlation coefficient for C was 0.983 which defined a high significance. The base length of the T-AD was set to equal the time from the midpoint of rain fall excess to the point of contraflexure. The constant K, derived in this studies is K=8.32+0.0213 {{{{ { L} over { SQRT { s} } }}}} with correlation coefficient, 0.964. 12. In the light of the results analysed in these studies, average errors in the peak discharge of the Synthetic unitgraph, Triangular unitgraph, and IUH were estimated as 2.2, 7.7 and 6.4 per cent respectively to the peak of observed average unitgraph. Each ordinate of the Synthetic unitgraph was approached closely to the observed one.

  • PDF

A Study on The Velocity Distribution in Closed Conduit by Using The Entropy Concept (엔트로피 개념을 이용한 관수로내의 유속분포에 관한 연구)

  • Choo, Tai Ho;Ok, Chi Youl;Kim, Jin Won;Maeng, Seung Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4B
    • /
    • pp.357-363
    • /
    • 2009
  • When yields the mean velocity of the closed conduit which is used generally, it is available to use Darcy Weisbach Friction Loss Head equation. But, it is inconvenient very because Friction Loss coefficient f is the function of Reynolds Number and Relative roughness (${\varepsilon}$/d). So, it is demanded more convenient equation to estimate. In order to prove the reliability and an accuracy of Chiu's velocity equation from the research which sees hereupon, proved agreement very well about measured velocity measurement data by using Laser velocimeter which is a non-insertion velocity measuring equipment from the closed conduit (Laser Doppler Velocimeter: LDV) and an insertion velocity measuring equipment and the Pitot tube which is a supersonic flow meter (Transit-Time Flowmeters). By proving theoretical linear-relation between maximum velocity and mean velocity in laboratory flume without increase and decrease of discharge, the equilibrium state of velocity in the closed conduit which reachs to equilibrium state corresponding to entropy parameter M value has a trend maintaining consistently this state. If entropy M value which is representing one section is determinated, mean velocity can be gotten only by measuring the velocity in the point appearing the maximum velocity. So, it has been proved to estimate simply discharge and it indicates that this method can be a theoretical way, which is the most important in the future, when designing, managing and operating the closed conduit.

Wind loads and load-effects of large scale wind turbine tower with different halt positions of blade

  • Ke, Shitang;Yu, Wei;Wang, Tongguang;Zhao, Lin;Ge, Yaojun
    • Wind and Structures
    • /
    • v.23 no.6
    • /
    • pp.559-575
    • /
    • 2016
  • In order to investigate the influence of different blade positions on aerodynamic load and wind loads and load-effects of large scale wind turbine tower under the halt state, we take a certain 3 MW large scale horizontal axis three-blade wind turbine as the example for analysis. First of all, numerical simulation was conducted for wind turbine flow field and aerodynamic characteristics under different halt states (8 calculating conditions in total) based on LES (large eddy simulation) method. The influence of different halt states on the average and fluctuating wind pressure coefficients of turbine tower surface, total lift force and resistance coefficient, circular flow and wake flow characteristics was compared and analysed. Then on this basis, the time-domain analysis of wind loads and load-effects was performed for the wind turbine tower structure under different halt states by making use of the finite element method. The main conclusions of this paper are as follows: The halt positions of wind blade could have a big impact on tower circular flow and aerodynamic distribution, in which Condition 5 is the most unfavourable while Condition 1 is the most beneficial condition. The wind loads and load-effects of disturbed region of tower is obviously affected by different halt positions of wind blades, especially the large fluctuating displacement mean square deviation at both windward and leeward sides, among which the maximum response occurs in $350^{\circ}$ to the tower top under Condition 8; the maximum bending moment of tower bottom occurs in $330^{\circ}$ under Condition 2. The extreme displacement of blade top all exceeds 2.5 m under Condition 5, and the maximum value of windward displacement response for the tip of Blade 3 under Condition 8 could reach 3.35 m. All these results indicate that the influence of halt positions of different blades should be taken into consideration carefully when making wind-resistance design for large scale wind turbine tower.

Improving of the Fishing Gear and Development of the Automatic Operation System in the Anchovy Boat Seine- II Analysis of escaping behaviour of anchovy in relation to underwater light and towing flow velocity (기선권현망어업의 어구개량과 자동화조업시스템 개발- II 수중광 및 예망유속과 멸치의 도피반응 행동 분석)

  • 김용해;장충식;안영수;김형석
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.2
    • /
    • pp.78-84
    • /
    • 2001
  • Escape behaviour of the anchovy (Engralius japonica, total length 4-7cm) at the inside wing net and bag net in the anchovy boat seine was observed by underwater video camera in order to clarify the relationship between visual stimulus of the gear or relative water flow inside gear and reacting behaviour. The vertical attenuation coefficient of underwater illuminance in the offshore of Keoje island and Tongyoung was ranged from 0.24 to 1.03 and it could be affect visual range and visual contrast of the fishing gear. The relative water flow at the joint part between inside wing and bagnet while towing was 1.5 times higher than at the middle part of inside wing or fore part of bag net, but it was estimated under than maximum swimming speed of 4-7 cm anchovy. The mean escaping number of anchovy from end part of inside wing of 30 cm mesh to out side for a minute within visual range of video camera was 455 and anchovy swimming forward from bag net through flapper was 308. These results revealed anchovy could escape as voluntary response in spite of higher visual stimulus or higher water flow.

  • PDF

A Study on the Management and the Discharge of the Sluice Gates (배수갑문(排水閘門)의 관리(管理) 및 배제유량(排除流量)에 관(關)한 연구(硏究))

  • Kim, Tai Cheol;Lee, Duk Joo;Han, Young Soo
    • Korean Journal of Agricultural Science
    • /
    • v.17 no.2
    • /
    • pp.102-114
    • /
    • 1990
  • This study was carried out to analyze the operation of the sluice gates by taking Sabkyo Reservoir as the model, and to examine the formulae of the design criteria for the Agricultural Land Improvement Project by hydraulic model experiments. The results were summarized as follows ; 1. According to the records of gate operation for 9 years, the mean height of the opened gates was 4.13 m, the mean number of operated gates were 4.04, the average annual number of operation were 67 times, the average annual operating time were 192.5 hours, and the average operating time were 2.88 hours. 2. The water supplied through Sabkyo Reservoir was 88.15 megatons per year, which was about 1.4 times the effective storage capacity. And the annual volume of pumping in May, which is the most water demanding season, was 29.56 megatons in average. 3. As the submerged orifice was transformed into the surface orifice, the suggested formulae for the orifice flow on the design criteria for the Agricultural Land Improvement Project showed a discontinuous line on the transition zone. It should be improved, because it is different from the real hydraulic phenomena. 4. The formulae for the orifice flow which are divided into the submerged and surface orifices are being used. However, these formulae could be substituted for the formular, $q=C{\cdot}W\sqrt{2gH_1}$, if the discharge coefficient considering the reservoir water level, the sea water level, and the gate opening height is used.

  • PDF