• 제목/요약/키워드: Mean Flow Analysis

검색결과 874건 처리시간 0.031초

A Study on the Air Foil Journal Bearing Analysis with Perturbed Rarefaction Coefficients

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho;Jang, Gun-Hee
    • KSTLE International Journal
    • /
    • 제7권2호
    • /
    • pp.27-34
    • /
    • 2006
  • Knudsen number is the ratio of molecular mean free path versus mm thickness and the criterion to determine the flow form. When its value is lower than 0.01, the flow can be assumed to has no slip boundary condition. And in the case that the value is between 0.01 and 10, then the flow has slip boundary condition at both the adjacent walls. The condition of the air flow between the rotating journal and top foil in the air foil bearing is determined by the rotating speed and load, and the Knudsen number is also varied by those values. Because the molecular mean free path is variable to the pressure and temperature, more exact formulation is necessary to understand and analyze the flow regime. In this study, the analysis considering Knudsen number formulated with those variables (pressure, temperature and mm thickness) was executed. The approximate value was examined using the equation to confirm whether the flow has the slip or no-slip boundary condition. From the analytic investigation, it was decided to range approximately 0.01 to 1.0 and the flow can be supposed to have the slip boundary condition. Under the condition of the slip flow, the static characteristics of the air foil bearing were examined using modified Reynolds equations. The results were compared with those considering no slip condition. It shows that the slip condition makes the flow decelerates and the load carrying capacity decreases compared with no slip condition. And as the bearing number and eccentricity ratio increase, the load carrying capacity also increased at both the cases. From this result, it can be supposed that the bearing torque also increases. In the analysis of the dynamic characteristics, the perturbed Knudsen number was taken into consideration. Because the Knudsen number is expressed as the terms of each variable, the perturbed equation can be simply derived. The results of both cases considering and not considering Knudsen number were compared each other. In the case of the direct terms of the stiffness and damping coefficients, the difference between both cases was little and increased as the bearing number and eccentricity ratio increased. And the cross terms have less or more differences.

어긋나기배열 직교류 열교환기의 열전달특성에 관한 연구 (A Study on Heat Transfer Characteristics for Cross Flow Heat Exchanger of Staggered Arrangement)

  • 유재환;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.1016-1023
    • /
    • 2012
  • 열교환기는 다수의 원관으로 구성하고 있기 때문에 원관 주위에서 국소열전달과 압력강하의 해석, 크기의 성능과 추산, 경제성으로 설계 시 중요한 역할을 한다. 본 연구에서는 어긋나기배열 직교류 열교환기에서 물의 온도 및 공기량 변화에 따른 대류열전달계수, 대수평균온도차, 압력손실 등을 고찰하기 위하여 실험 및 해석을 수행하였다. 본 열교환기는 관군이 5행 7열 어긋나기배열로서 구성하였으며, 실험 및 해석 조건은 물의 온도는 $40^{\circ}C{\sim}65^{\circ}C$ 범위이고, 공기량은 $5.0{\sim}12.3m^3/s$ 범위이다. 그 결과로서 물의 온도 및 유량을 증가함에 따라 공기밀도가 감소하여 유속도 낮아지는 특성을 보여 레이놀즈수가 감소하고, 공기량 증대로 평균열전달계수가 증가하여 전열성능은 향상됨을 알 수 있었고, 압력손실도 증가하였다. 그리고 해석결과로서는 열전달율의 경우는 약 8~12%, 압력강하는 약 0.01~7.5% 오차를 나타내어 본 연구의 적합성을 평가할 수 있었다.

A comprehensive approach to flow-based seismic risk analysis of water transmission network

  • Yoon, Sungsik;Lee, Young-Joo;Jung, Hyung-Jo
    • Structural Engineering and Mechanics
    • /
    • 제73권3호
    • /
    • pp.339-351
    • /
    • 2020
  • Earthquakes are natural disasters that cause serious social disruptions and economic losses. In particular, they have a significant impact on critical lifeline infrastructure such as urban water transmission networks. Therefore, it is important to predict network performance and provide an alternative that minimizes the damage by considering the factors affecting lifeline structures. This paper proposes a probabilistic reliability approach for post-hazard flow analysis of a water transmission network according to earthquake magnitude, pipeline deterioration, and interdependency between pumping plants and 154 kV substations. The model is composed of the following three phases: (1) generation of input ground motion considering spatial correlation, (2) updating the revised nodal demands, and (3) calculation of available nodal demands. Accordingly, a computer code was developed to perform the hydraulic analysis and numerical modelling of water facilities. For numerical simulation, an actual water transmission network was considered and the epicenter was determined from historical earthquake data. To evaluate the network performance, flow-based performance indicators such as system serviceability, nodal serviceability, and mean normal status rate were introduced. The results from the proposed approach quantitatively show that the water network is significantly affected by not only the magnitude of the earthquake but the interdependency and pipeline deterioration.

경사각도 변화에 따른 태양열 집광흡수기내의 열 유체 유동에 관한 수치해석 (A Numeical Analysis on the Thermal and Fluid Flow in Solar Concentration Absorber with Tilt Angle)

  • 이용훈;배철환;배강열;정효민;정한식
    • 한국태양에너지학회 논문집
    • /
    • 제21권3호
    • /
    • pp.33-41
    • /
    • 2001
  • This paper showed the a numerical analysis of the thermal and fluid flow in solar concentration absorber with tilt angle, and the purpose of this study is to obtain the optimum tilt angle of the absorber. The boundary conditions of a numerical model were assumed as flows : (1) The heat source is located at the center of absorber (3) The bottom wall is opened and adiabatic. (3) The top, right and left walls are cooled wall. The parameters for the numerical analysis are tilt angles and Rayleigh numbers i.e., tilt angle $\theta=0^{\circ},\;15^{\circ},\;30^{\circ},\;45^{\circ},\;60^{\circ},\;75^{\circ},\;90^{\circ}$ and 101 $\leq$ Ra $\leq$ 103. The velocity vectors and isotherms were dense at wall side and the heat source. The mean Nusselt number had a maximum value at $\theta=0^{\circ}$ and showed a low value as the tilt angles were increased. Finally, the decrease rate of mean Nusselt number was appeared small with tilt angle when Rayleigh numbers were increased.

  • PDF

이젝터 구동관로의 직경비와 끝단의 위치 변화에 따른 유동특성 (Flow Characteristics of Ejector Driven Pipe According to the Changes of Diameter Ratio and End Position)

  • 김노형
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.45-51
    • /
    • 2016
  • This study conducted CFD analysis on the mean velocity vector of distribution of the ejector driven pipe while changing the inlet velocity to 1 m/s at the diameter ratio of diffuser of 1:3, 1:2.25, 1:1.8 with the end position of driven pipe at 1, 1.253, 1.333, 1.467 respectively, which used $k-{\varepsilon}$/High Reynolds Number for the turbulence model, SIMPLE method for the analysis algorithm, and PIV experiment to verify the CFD analysis. As a result of the CFD analysis the optimum diameter ratio of ejector driven pipe was 1:3, the optimum end position of driven pipe was 1.333 for the diameter ratio of 1:3, 1:2.25, 1:1.8 and the PIV experiment obtained the same result as the CFD analysis. Therefore, the numerical analysis of the flow characteristics of ejector can be used for the optimum design implementation on ejector system.

폐기물 처리시설에서의 악취 및 환기에 관한 연구 (A study on odor and ventilation in waste treatment facilities)

  • 서병석;전용한
    • Design & Manufacturing
    • /
    • 제14권2호
    • /
    • pp.28-33
    • /
    • 2020
  • Recently, as the income level and quality of life have improved, the desire for a pleasant environment has increased, and a deodorization plan is required through thorough prevention and diffusion of odorous substances in waste treatment facilities recognized as hateful facilities, appropriate collection, and selection of the right prevention facilities. In this study, a waste disposal facility was modeled and computerized analysis for odor and ventilation analysis was conducted. Numerical analysis of the waste treatment facility was performed at the size of the actual plant. CATIA V5 R16 for numerical model generation and ANSYS FLUENT V.13 for general purpose flow analysis were used as analysis tools. The average air-age of the internal was 329 seconds, and the air-flow velocity was 0.384m/s. The odor diffusion analysis inside the underground pump room showed congestion-free air circulation through streamline distribution and air-age distribution. This satisfies the ASHRAE criteria. In addition, the results of diffusion analysis of odorous substances such as ammonia, hydrogen sulfide, methyl mercaptan and dimethyl sulfide were all expected to satisfy the regulatory standards. Particularly in the case of the waste loading area, the air-flow velocity was 0.297m/s, and the result of meeting the regulatory standards with 0.167ppm of ammonia, 0.00548ppm of hydrogen sulfide, 0.003ppm of methyl mercaptan, and 0.003ppm of dimethyl sulfide was found.

유체에 잠겨있는 가는 열전대의 시간상수 측정 (Time Constant of a Fine-Wire Thermocouple Immersed to Fluids)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권2호
    • /
    • pp.190-199
    • /
    • 1998
  • a new measuring method is suggested to determine the time constant of a thermocouple wire to be applied for the measurement of the true fluid temperatures in varying flow states. Based on the techniques of internal heating which are commonly used to measure mean time constants we extend the existing method to measure instantaneous time constants continuously. A method of measurement and analysis is presented and verified experimentally.

  • PDF

Low-frequency modes in the fluid-structure interaction of a U-tube model for the steam generator in a PWR

  • Zhang, Hao;Chang, Se-Myong;Kang, Soong-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제51권4호
    • /
    • pp.1008-1016
    • /
    • 2019
  • In the SG (steam generator) of PWR (pressurized water reactor) for a nuclear plant, hundreds of U-shaped tubes are used for the heat exchanger system. They interact with primary pressurized cooling water flow, generating flow-induced vibration in the secondary flow region. A simplified U-tube model is proposed in this study to apply for experiment and its counterpart computation. Using the commercial code, ANSYS-CFX, we first verified the Moody chart, comparing the straight pipe theory with the results derived from CFD (computational fluid dynamics) analysis. Considering the virtual mass of fluid, we computed the major modes with the low natural frequencies through the comparison with impact hammer test, and then investigated the effect of pump flow in the frequency domain using FFT (fast Fourier transform) analysis of the experimental data. Using two-way fluid-structure interaction module in the CFD code, we studied the influence on mean flow rate to generate the displacement data. A feasible CFD method has been setup in this research that could be applied potentially in the field of nuclear thermal-hydraulics.

Exit Flow Measurements of a Centrifugal Pump Impeller

  • Hong, Soon-Sam;Kang, Shin-Hyoung
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1147-1155
    • /
    • 2002
  • Discharge flows from a centrifugal pump impeller with a specific speed of 150 [rpm, m$^3$/min, m] were experimentally investigated. A large axisymmetric collector instead of a volute casing was installed to obtain circumferentially uniform flow, i.e. without interaction of the impeller and the volute. The unsteady flow was measured at the impeller exit and vaneless diffuser using a hot film probe and a pressure transducer. The flow at impeller exit showed pronounced jet-wake flow patterns. The wake, which was on the suction/hub side at high flow rate, became enlarged pitchwisely on both the hub and the shroud side as the flow rate decreases. The pitchwise non-uniformity of the flow rapidly decreased along the downstream and the non-uniformity almost disappeared at radius ratio of 1.18 for medium flow rate. The mean vaneless diffuser flow was reasonably predicted using a one dimensional analysis when an empirical constant was used to specify the skin friction coefficient. The data can be used for a centrifugal pump impeller design and validation of CFD codes and flow modeling.

NTT/BT 프로토콜의 성능 분석 (Performance Analysis of NTT/BT Protocol)

  • 이창훈;백상엽;이동주
    • 한국경영과학회지
    • /
    • 제22권2호
    • /
    • pp.99-123
    • /
    • 1997
  • Performance analysis of NTT/BT protocol is investigated, which is a GFC (Generic Flow Control) ptotocol in ATM (Asynchronous Transfer Mode ) network and is based on cyclic reset mechanism. THe mean cell delay time is proposed as a performance measure of NTT/BT protocol. The mean cell delay time is defined as the duration from the instant the cell arrives at the transmission buffer until the cell is fully transmitted. The process of cell transmission can be described as a single server queueing modle with two dependent services. By utilizing this model, mean cell delay time is obtained and sensitivity of the factors such as window size and reset period is also analysed.

  • PDF