• Title/Summary/Keyword: Mean Equivalent Diameter

Search Result 30, Processing Time 0.035 seconds

Flow Around an Elliptic Cylinder Placed Near a Plane Boundary (평판 가까이에 놓인 타원형 실린더 주위 유동에 관한 연구)

  • Kim, Seong-Min;Lee, Sang-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2637-2649
    • /
    • 1996
  • Flow characteristics and aerodynamic forces acting on an elliptic cylinder placed in a plane boundary layer were investigated experimentally. Four cylinder models with axis ratio(major axis to minor axis, AR=A/B) of 1, 2, 3, and 4 having the same equivalent diameter were used in this experiment. The Reynolds number based on the equivalent diameter $D_e$(=20mm) was 13,000. In the case of circular cylinder, regular vortex shedding occurs for the cylinder gaps larger than G/B=0.3 and is not almost related to the boundary layer thickness. But, for the elliptic cylinders, the vortex shedding frequency is increased with increasing the gap ratio (G/B) and the axis ratio (AR) of elliptic cylinders. The maximum drag coefficient acting on a circular cylinder is mainly affected by the boundary layer thickness. But, the elliptic cylinders(AR$\geq$2), except for the smaller gap G/B<0.2, show a nearly constant drag coefficient which is much smaller than that of a circular cylinder. The base pressure on the flat plate decreases with increasing the axis ratio(AR) of the elliptic cylinder. In the case of a circular cylinder, the base pressure has the minimum value at the gap ratio G/B=0.4, but it occurs at G/D=2 for elliptic cylinders. The mean velocity of the cylinder wake is quickly recovered at a small cylinder height ratio(H/$\delta$), but the turbulent intensity is rapidly recovered at a large cylinder height ratio(H/$\delta$). The effective wake region in the plane boundary layer is shrinkaged with increasing the axis ratio(AR) of elliptic cylinder. And the drag coefficient and streamwise turbulent intensity of the elliptic cylinder with AR=4 are less than half of those for the circular cylinder(AR=1).

Simulation of the Growth of Non-Spherical Particles in a Counterflow Diffusion Flame (대향류 확산 화염 중에서 비구형 입자 성장에 관한 해석)

  • Jeong, Jae In;Hwang, Jun Young;Lee, Bang Weon;Choi, Mansoo;Chung, Suk Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.997-1009
    • /
    • 1999
  • Silica particle formation and growth process including chemical reaction, coagulation and sintering was studied in a counterflow diffusion flame burner. The counterflow geometry provides a one dimensional flow field, along the stagnation point streamline, which greatly simplifies interpretation of the particle growth characteristics. $SiCl_4$ has been used as the source of silicon in hydrogen/oxygen/argon flames. The temperature profiles obtained by calculation showed a good agreement with experiment data. Using one and two dimensional sectional method, aerosol dynamics equation in a flame was solved, and these two results were compared. The two dimensional section method can consider sintering effect and growth of primary particle during synthesis, thus it showed evolution of morphology of non-spherical particles (aggregates) using surface fractal dimension. The effects of flame temperature and chemical loading on particle dynamics were studied. Geometric mean diameter based on surface area and total number concentration followed the trend of experiment results, especially, the change of diameters showed the sintering effect in high temperature environment.

Characteristics of Hypoxic Pulmonary Vasoconstriction of the Rat: Study by the Vessel Size and Location in the Lung

  • Lee, Sang-Jin;Kim, Ki-Whan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.3
    • /
    • pp.321-328
    • /
    • 1999
  • Pulmonary blood vessels with diameters of $200{\sim}400\;{\mu}m$ produce considerably more force in response to vasoconstrictor drugs than those which are either smaller or larger. We have therefore investigated whether or not hypoxic pulmonary vasoconstriction (HPV) is more powerful in vessels of these diameters. We have also looked at the possibility that vessels from different regions of the lung respond differently. To do this we have grouped vessels according to their location within the lung as well as by size. We used a small vessel myograph (Cambustion AM10, Cambridge, UK) to study 208 preconstricted $(1\;{\mu}M\;PGF_{2{\alpha}})$ small pulmonary arteries $(300{\sim}800\;{\mu}m$ diameter when stretched to a tension equivalent to 25 mmHg transmural pressure) from 39 rats anaesthetized with 2% inspired halothane. A biphasic contraction was observed in response to hypoxia (ca. 25 mmHg $Po_2).$ The magnitudes of both the first, transient, phase (PT, peak tension) and of the second, sustained, phase (SST, steady state tension) were measured. The latter was measured 40 min after the start of hypoxia. The first phase was most pronounced in vessels with an average diameter of 423 ${\mu}m$ while the second phase was most pronounced in larger vessels (mean diameter 505 ${\mu}m).$ These maximal responses were all seen in vessels somewhat larger than reported by others. The responses of smaller vessels $(400{\sim}500\;{\mu}m)$ did not depend upon their location within the lung, but those of larger vessels $(600{\sim}700\;{\mu}m)$ showed regional differences. Those from the right lobe and those from the base of the lung gave the largest responses. It was especially noticeable that large vessels (631 ${\mu}m$ diameter) from the base of the right lung gave the biggest responses. Thus HPV seems to occur not in a uniform manner, dependent solely to the size of vessels, but it also depends to some degree on the region of the lung from which vessels have been taken. Furthermore, our results suggest that larger vessels, as well as smaller ones, may contribute significantly to HPV.

  • PDF

The effect of the primary particle of the A356 Alloy according to different wall thickness of the sleeve of die-casting by electromagnetic stirrer (전자교반시스템에서 Sleeve 의 크기가 유동특성과 미세조직에 미치는 영향)

  • 고재홍;서판기;강충길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.660-663
    • /
    • 2004
  • Recently in the automotive industries, light and high quality material is strongly required because of emissions regulation issues. In the electromagnetic stirring process, it has many merits that are the exact control ability about material processing and a good point of the protection of environment. In this paper, the morphology of the change of primary Al phase in A356 alloy by electro magnetic stirrer was investigated to obtain the globular structure. The parameters are the current, stirring time, pouring temperature and cooling rate of different wall thickness; 5mm, 15mm, 25mm respectively. By proper selection of the processing parameters, globular primary particles can be obtained by electromagnetic stirrer.

  • PDF

The Technology of Material Processing for Gram Size Control by Electromagnetic Stirring (전자기장을 이용한 결정립 제어 소재 공정 기술)

  • Jung Y. J.;Seo P. K.;Ko J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.254-258
    • /
    • 2004
  • Actual trends in automotive industry lead to an increase use of lightweight structures imposing the need fur high strength aluminum alloys with complex shape. In the electromagnetic stirring process, it has many merits which are the exact control ability about material processing and a good point of the protection of environment comparison with the mechanical stirring. The interface of cells consisting of primary particle formed by the electromagnetic stirring due to particle regrowth during cooling the alloy. By electromagnetic stirring process, the microstructure of material has a good point, also it can control the material processing exactly.

  • PDF

The Grain Size Control of A356 Aluminum Alloy by Electromagnetic Stirring (수평식 전자교반을 이용한 A356 합금의 결정립 제어)

  • Ko J. H.;Seo P. K.;Choi W. S.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.111-114
    • /
    • 2004
  • It is many devices to obtain the globular structure because the globularity of the structure is the key to the low apparent viscosity and also to good rheological properties. In this study, the morphology of the change of primary Al phase in A356 alloy by electro magnetic stirrer was investigated to obtain the globular structure. The parameters are the current, stirring time, pouring temperature individually. The greater current and longer stirring time was to get the finer the primary however in case of over the 80A of current and 60sec of stirring time, the primary Al was merged together and was increased. The effect of pouring temperature has an important effect on the size of primary phase. About the $675^{\circ}C$, the primary Al was very fined.

  • PDF

Manufacture of Aluminum Alloy Rheology Materials Using Spiral Stirring Equipment (나선형 기계 교반 장치를 이용한 Al 합금 레오로지 소재의 제조)

  • Bae, J.W.;Han, S.H.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.9-12
    • /
    • 2008
  • Recently, industries and academic institutes have been interested in the rheology forming technology for light weight materials. However, this rheocasting process has advantages such as the high initial investment cost and the lower mechanical properties than thixocasting. In this study, the continuous fabrication of rheological material with a spiral stirring equipment(mechanical stirring system) was newly devised to overcome the disadvantages of rheocasting process. The experimental parameters were stirring time($0{\sim}1200sec$), stirring velocity ($0{\sim}100rpm$) and stirring temperature($650{\sim}680^{\circ}C$). The optimal conditions for fabricated rheological material of A6061 alloy were stirring time at 300sec, stirring velocity at 60rpm and stirring temperature at $650^{\circ}C$. At these results, the equivalent diameter was $45{\sim}65{\mu}m$, mean roundness was $1.4{\sim}1.6$ and Vickers hardness was 60Hv.

Comparison of Doses According to Change of Bladder Volume in Treatment of Prostate Cancer (전립선암 치료 시 방광의 용적 변화에 따른 선량의 비교 평가)

  • Kwon, Kyung-Tae;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.415-421
    • /
    • 2017
  • In the case of radiation therapy for prostate cancer, a balloon infused with a certain amount of air through the anus is used to reduce rectal dose. Because of the reason, radiation therapy for prostate cancer has acquired CBCT for daily image induction. In order to maintain the anatomical structure most similar to the first CT taken before treatment, it is pretreated, but it can not be said to be perfectly consistent. In two actual treatment regimens, the volume of the bladder was measured as 45.82 cc and 63.43 cc, and the equivalent diameter was 4.4 cm and 4.9 cm. As a result of this study, the mean volume of the bladder was estimated to be 56.2 cc, 105.6 cc by 20 CBCT. The mean dose of CBCT was 1.74% and the mean Bladder mean dose was 96.67%. In case B, PTV mean dose was 4.31%, Bladder mean Dose was estimated to be 97.35%. The changes in the volume of the bladder resulted in changes in the dose of PTV and bladder. The correlation coefficient of bladder dose according to the change of bladder volume showed linearity of mean dose $R^2=-0.94$. The correlation coefficient of the PTV dose according to the volume change of the bladder showed linearity of mean dose $R^2=0.04$. It was found that the dose change of PTV was larger than that of bladder according to the change of bladder volume.

Moisture-dependent Physical Properties of Detarium microcarpum Seeds

  • Aviara, Ndubisi A.;Onaji, Mary E.;Lawal, Abubakar A.
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.212-223
    • /
    • 2015
  • Purpose: Physical properties of Detarium microcarpum seeds were investigated as a function of moisture content to explore the possibility of developing bulk handling and processing equipment. Methods: Seed size, surface area, and 1,000-seed weight were determined by measuring the three principal axes, measuring area on a graph paper, and counting and weighing seeds. Particle and bulk densities were determined using liquid displacement and weight in a measuring cylinder, respectively. Porosity was computed from particle and bulk densities. Roundness and sphericity were measured using shadowgraphs. Angle of repose and static and kinetic coefficients of friction were determined using the vertical cylindrical pipe method, an inclined plane, and a kinetic coefficient of friction apparatus. Results: In the moisture range of 8.2%-28.5% (db), the major, intermediate, and the minor axes increased from 2.95 to 3.21 cm, 1.85 to 2.61 cm, and 0.40 to 1.21 cm, respectively. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose increased from 354.62 to $433.19cm^2$, 3.184 to 3.737 kg, 1060 to $1316kg/m^3$, and 30.0% to 53.1%, respectively, whereas bulk density decreased from 647.6 to $617.2kg/m^3$. Angle of repose increased from $13.9^{\circ}$ to $28.4^{\circ}$. Static and kinetic coefficients of friction varied between 0.096 and 0.638 on different structural surfaces. Conclusions: Arithmetic mean, geometric mean, and equivalent sphere effective diameters determined at the same moisture level were significantly different from each other, with the arithmetic mean diameter being greatest. Surface area, 1,000-seed weight, particle density, porosity, and angle of repose all increased linearly with moisture content. Bulk density decreased linearly with moisture content. The coefficients of friction had linear relationships with moisture content. The highest values of static and kinetic coefficients of friction were observed on galvanized steel and hessian fabric, respectively, whereas the lowest values were observed on fiberglass.

Experimental investigation on the turbulent elliptic jets by using a 3-D LDV system (3-D LDV 시스템을 이용한 타원제트의 난류특성에 관한 연구)

  • 권영철;이상준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.2160-2170
    • /
    • 1991
  • Three-dimensional turbulent structures in the near field of elliptic jet were experimentally investigated by using a three-color, three-component Laser Doppler Velocimeter. The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter(De) was about 4*10$^{4}$. The turbulent characteristics of a sharp-edged elliptic nozzle with aspect ratio of 2 were analyzed along major and minor axis at X/De=2,3,5,7 and along the centerline up to X/De=14. Quantities measured at each point with the 3-D LDV system were three orthogonal velocity components, turbulent intensity, skewness, flatness, and Reynolds shear stress. The nondimensional mean velocities coincided well with the Schlichting's empirical curve with going downstream. Elliptic jet of AR=2 had two switching points at about X/De=2 and 16. The turbulent intensity along the minor axis was distributed widely than that along the major axis. In the near field, X/De<5, the Reynolds shear stresses of the inner part of the elliptic jet had negative value, which indicated the enhancement of entrainment toward the inner part.