• 제목/요약/키워드: Mean Brightness Preserving

검색결과 4건 처리시간 0.014초

Blending of Contrast Enhancement Techniques for Underwater Images

  • Abin, Deepa;Thepade, Sudeep D.;Maitre, Amulya R.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.1-6
    • /
    • 2022
  • Exploration has always been an instinct of humans, and underwater life is as fascinating as it seems. So, for studying flora and fauna below water, there is a need for high-quality images. However, the underwater images tend to be of impaired quality due to various factors, which calls for improved and enhanced underwater images. There are various Histogram Equalization (HE) based techniques which could aid in solving these issues. Classifying the HE methods broadly, there is Global Histogram Equalization (GHE), Mean Brightness Preserving HE (MBPHE), Bin Modified HE (BMHE), and Local HE (LHE). Each of these HE extensions have their own pros and cons and thus, by considering them we have considered BBHE, CLAHE, BPDHE, BPDFHE, and DSIHE enhancement algorithms, which are based on Mean Brightness Preserving HE and Local HE, for this study. The performance is evaluated with non-reference performance measures like Entropy, UCIQE, UICM, and UIQM. In this study, we apply the enhancement algorithms on 300 images from the UIEB benchmark dataset and then apply the techniques of cascading fusion on the best-performing algorithms.

자연스러운 영상의 평균 밝기 유지를 위한 차별적 압축 방법 기반의 분할 히스토그램 평활화 (Bi-Histogram Equalization based on Differential Compression Method for Preserving the Trend of Natural Mean Brightness)

  • 이재원;홍성훈
    • 방송공학회논문지
    • /
    • 제19권4호
    • /
    • pp.453-467
    • /
    • 2014
  • 일반적인 히스토그램 평활화는 화질향상을 위한 명암대비 향상 효과가 뛰어나다. 하지만 과도한 밝기 값의 변화가 나타나기 때문에 영상의 평균밝기가 프레임 단위로 변화하는 TV와 같은 동영상 응용분야에 적용하기에는 부적합하다. 이러한 단점을 해결하기 위하여 히스토그램 평활화의 변형된 방법에 대한 다양한 연구가 이루어져 왔다. 그러나 기존의 방법들은 과포화현상(over-enhancement), 계조 현상(false-contouring)과 같은 화질 열화를 보인다. 본 논문에서는 차별적 히스토그램 압축방법을 기반으로 하는 목표 평균 밝기값을 이용한 분할 히스토그램 평활화를 통해서 개선된 명암대비 향상 기법을 제안한다. 제안한 방법은 평균 밝기값을 기준으로 히스토그램을 분할하고, 각 영역에 대해 히스토그램을 빈도수에 따라 차별적으로 압축한다. 그리고 변형된 히스토그램을 목표 평균 밝기값 기준으로 평활화한다. 이를 통하여 화질 열화를 억제하고, 동영상의 각 프레임의 평균밝기 변화를 유지하면서 명암대비를 개선시킨다. 실험 결과 제안방법은 기존 방법에 비해 동영상에서 각 프레임의 평균밝기를 잘 유지하고, 화질 열화 없이 좋은 명암대비 향상 효과를 보였다.

히스토그램 평활화를 이용한 원격감지 영상의 콘트라스트 향상 (Contrast Enhancement of Remotely Sensed Images Using Histogram Equalization)

  • 서용수
    • 대한공간정보학회지
    • /
    • 제11권1호
    • /
    • pp.13-19
    • /
    • 2003
  • 본 논문에서는 영상의 콘트라스트 향상법 중에서 히스토그램 평활화(HE) 방법과 평균값 보존 히스토그램 평활화(BBHE) 방법에 대한 처리방법과 처리과정에 대해 논하였으며, Landsat 위성의 TM 센서에 의해 획득된 원격감지 영상데이터 6개 대역(band)의 데이터를 이용하여 3가지 콘트라스트 향상법인 Min-Max 방법, HE 방법, BBHE 방법으로 처리한 결과영상과 히스토그램을 비교 분석하였다. 처리 결과영상과 히스토그램을 비교 분석한 결과, HE 방법과 BBHE 방법은 히스토그램을 평탄화시키는 특성으로 인하여 평활화처리 후 영상의 밝기를 과도하게 변화시키는 점이 있으나, 회색준위의 동적범위를 전체 범위로 확장시킨 결과로 콘트라스트 향상 효과가 우수함을 확인할 수 있었다. HE 방법의 특징은 원 영상의 평균값에 무관하게, 처리결과 영상의 평균값이 회색준위의 중간레벨 부근으로 변환시킴을 알 수 있다. BBHE 방법의 특징은 원 영상의 평균값에 제한되어 변환되므로 인해서 원 영상의 분광특성을 잘 보존하면서 우수한 콘트라스트 향상효과를 나타냈다.

  • PDF

가우시안 영역 분리 기반 명암 대비 향상 (Contrast Enhancement based on Gaussian Region Segmentation)

  • 심우성
    • 방송공학회논문지
    • /
    • 제22권5호
    • /
    • pp.608-617
    • /
    • 2017
  • 영역 분리에 의한 명암대비 방법들이 제안되어 왔지만 영상의 히스토그램에 따라 과포화 되는 부작용이나 밝기 값 보존과 명암대비 효과의 상반 관계에 대한 개선이 필요하다. 본 논문은 다양한 히스토그램에서도 명암 대비가 개선 되도록 영역 분리 시 각 서브 영역이 가우시안 분포를 갖도록 분리하고 영역별 평활화하는 명암 대비 방법을 제안 한다. 영역 분리는 $L^*a^*b^*$ 컬러 공간에서 K-평균 방법과 기대-최대 방법에 의해 영역맵과 확률맵을 생성하며 영역별 히스토그램 평활화 방법은 영역간 히스토그램 중복 최소를 위해 평균값 이동과 영역 분리에서 생성된 확률맵을 변환 함수에 활용함으로써 영역별 밝기값을 보존 하였다. 실험은 기존의 명암 대비 방법들과 평균 밝기 차이와 평균 엔트로피 값을 이용하여 밝기 변화가 적고 영상의 세부 정보가 표현됨에 의한 명암대비 개선을 보인다.