• Title/Summary/Keyword: Mean Brightness Preservation

Search Result 3, Processing Time 0.023 seconds

Maximum-Entropy Image Enhancement Using Brightness Mean and Variance (영상의 밝기 평균과 분산을 이용한 엔트로피 최대화 영상 향상 기법)

  • Yoo, Ji-Hyun;Ohm, Seong-Yong;Chung, Min-Gyo
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.61-73
    • /
    • 2012
  • This paper proposes a histogram specification based image enhancement method, which uses the brightness mean and variance of an image to maximize the entropy of the image. In our histogram specification step, the Gaussian distribution is used to fit the input histogram as well as produce the target histogram. Specifically, the input histogram is fitted with the Gaussian distribution whose mean and variance are equal to the brightness mean(${\mu}$) and variance(${\sigma}2$) of the input image, respectively; and the target Gaussian distribution also has the mean of the value ${\mu}$, but takes as the variance the value which is determined such that the output image has the maximum entropy. Experimental results show that compared to the existing methods, the proposed method preserves the mean brightness well and generates more natural looking images.

Contrast Enhanced Tone Mapping Operator for High Dynamic Range Image Based on Guided Image Filter

  • Li, Xing;Wee, Seungwoo;Jeong, Jechang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.59-62
    • /
    • 2018
  • In this paper, we propose a contrast enhancement algorithm using guided image filter (GIF). The GIF is used to divide an HDR image into a base layer and a detail layer. The energy scale of base layer determinate the darkness and brightness of the image. However, the detail information in the base layer is difficult to be displayed because of the high brightness and clusters of low brightness. We propose a contrast enhancement method by adjusting the gray level of base layer by subtracting the mean value of itself. It is combined with the detail layer to preserve the detail information. Experiment results show that the proposed algorithm has better performance in detail preservation and contrast enhancement.

  • PDF

Image Contrast Enhancement based on Histogram Decomposition and Weighting (히스토그램 분할과 가중치에 기반한 영상 콘트라스트 향상 방법)

  • Kim, Ma-Ry;Chung, Min-Gyo
    • Journal of Internet Computing and Services
    • /
    • v.10 no.3
    • /
    • pp.173-185
    • /
    • 2009
  • This paper proposes two new image contrast enhancement methods, RSWHE (Recursively Separated and Weighted Histogram Equalization) and RSWHS (Recursively Separated and Weighted Histogram Specification). RSWHE is a histogram equalization method based on histogram decomposition and weighting, whereas RSWHS is a histogram specification method based on histogram decomposition and weighting. The two proposed methods work as follows: 1) decompose an input histogram based on the image's mean brightness, 2) compute the probability for the area corresponding to each sub-histogram, 3) modify the sub-histogram by weighting it with the computed probability value, 4) lastly, perform histogram equalization (in the case of RSWHE) or histogram specification (in the case of RSWHS) on the modified sub-histograms independently. Experimental results show that RSWHE and RSWHS outperform other methods in terms of contrast enhancement and mean brightness preservation as well.

  • PDF