• 제목/요약/키워드: Mean Flow Coefficient

검색결과 346건 처리시간 0.023초

Numerical Analysis of Convective Heat and Mass Transfer around Human Body under Strong Wind

  • Li, Cong;Ito, Kazuhide
    • 국제초고층학회논문집
    • /
    • 제1권2호
    • /
    • pp.107-116
    • /
    • 2012
  • The overarching objective of this study is to predict the convective heat transfer around a human body under forced strong airflow conditions assuming a strong wind blowing through high-rise buildings or an air shower system in an enclosed space. In this study, computational fluid dynamics (CFD) analyses of the flow field and temperature distributions around a human body were carried out to estimate the convective heat transfer coefficient for a whole human body assuming adult male geometry under forced convective airflow conditions between 15 m/s and 25 m/s. A total of 45 CFD analyses were analyzed with boundary conditions that included differences in the air velocity, wind direction and turbulence intensity. In the case of approach air velocity $U_{in}=25m/s$ and turbulent intensity TI = 10%, average convective heat transfer coefficient was estimated at approximately $100W/m^2/K$ for the whole body, and strong dependence on air velocity and turbulence intensity was confirmed. Finally, the formula for the mean convective heat transfer coefficient as a function of approaching average velocity and turbulence intensity was approximated by using the concept of equivalent steady wind speed ($U_{eq}$).

중속 디젤엔진의 실린더 헤드포트 유동 특성 실험 연구 (An Experimental Study of the Flow Characteristics of Cylinder Head Port for Medium-Speed Diesel Engines)

  • 김진원;갈상학
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.790-795
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly affected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. This paper presents the results of an experimental investigation of steady flow through the various kinds of commercial cylinder head ports, and the development procedures of HHI's H21/32 prototype cylinder head ports.

  • PDF

입방형 채널 캐비티 유동의 PIV 해석 (PIV Analysis of Cubic Channel Cavity Flow)

  • 조대환;김진구;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권5호
    • /
    • pp.557-563
    • /
    • 1997
  • The unsteady flow in three-dimensional cubic cavity with narrow channel at upper region is investigated experimentally for three kinds of Reynolds number, 1*10/sup 4/, 3*10/sup 4/ and 5*10/sup 4/ based on the cavity width and cavity inlet mean flow velocity. Instant velocity vectors are obtained simultaneously at whole field by PIV(Particle Image Velocimetry). Wall pressure distributions are estimated using Poisson equation from the velocity data. Results of PIV reveal that severe unsteady flow fluctuation within the cavity are remarkable at all Reynolds numbers and sheared mixing layer phenomena are also found at the region where inlet driving flow is collided with the clock-wise rotating main primary vortex. Instant velocity profiles reveal that deformed forced vortex formation is observed throughout the entire region and spanwise kinetic energy migration is conspicuous.

  • PDF

11L급 LPLi방식 대형엔진의 흡기스월비 최적화 연구 (Optimization of Swirl Ratio of Intake Port in 11L LPLi Engine)

  • 이진욱;강건용;민경덕
    • 한국자동차공학회논문집
    • /
    • 제11권3호
    • /
    • pp.99-105
    • /
    • 2003
  • The configuration of intake port is a dominant factor of inlet air flow and mixture formation in an engine. In this study, as an available technology to optimum intake port, the flow box system using resine has been applied. So we presents a methodology for estimating inlet flow characteristics in this paper. This quantified experimental result shows good agreements with visualization data in a cylinder. We obtained the optimal value of swirl ratio and flow coefficient under steady flow rig test for new development of intake port for heavy-duty engine. From this results, the cylinder heat with a good evaluated swirl flow characteristics was developed and adapted for a 11L heavy-duty engine using the liquid phase LPG injection (LPLi) system. This .research expects to clarify major factor that make the intake port efficiently.

어긋나기배열 직교류 열교환기의 열전달특성에 관한 연구 (A Study on Heat Transfer Characteristics for Cross Flow Heat Exchanger of Staggered Arrangement)

  • 유재환;윤준규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권8호
    • /
    • pp.1016-1023
    • /
    • 2012
  • 열교환기는 다수의 원관으로 구성하고 있기 때문에 원관 주위에서 국소열전달과 압력강하의 해석, 크기의 성능과 추산, 경제성으로 설계 시 중요한 역할을 한다. 본 연구에서는 어긋나기배열 직교류 열교환기에서 물의 온도 및 공기량 변화에 따른 대류열전달계수, 대수평균온도차, 압력손실 등을 고찰하기 위하여 실험 및 해석을 수행하였다. 본 열교환기는 관군이 5행 7열 어긋나기배열로서 구성하였으며, 실험 및 해석 조건은 물의 온도는 $40^{\circ}C{\sim}65^{\circ}C$ 범위이고, 공기량은 $5.0{\sim}12.3m^3/s$ 범위이다. 그 결과로서 물의 온도 및 유량을 증가함에 따라 공기밀도가 감소하여 유속도 낮아지는 특성을 보여 레이놀즈수가 감소하고, 공기량 증대로 평균열전달계수가 증가하여 전열성능은 향상됨을 알 수 있었고, 압력손실도 증가하였다. 그리고 해석결과로서는 열전달율의 경우는 약 8~12%, 압력강하는 약 0.01~7.5% 오차를 나타내어 본 연구의 적합성을 평가할 수 있었다.

음장이 등온원통으로부터의 강제대류 열전달에 미치는 영향 (Effect of Sound Field on the Forced Convection Heat Transfer from an Isothermal Cylinder)

  • 권영필
    • 대한기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.373-380
    • /
    • 1988
  • 본 연구의 목적은 음장의 입자속도가 기류의 평균속도와 비슷한 크기인 경우에 원통으로부터 열전달의 동특성과 한 사이클의 평균값인 평균열전달이 음장에 의하여 어떠한 영향을 받는가를 구하기 위한 것이다.

Reynolds 수와 Knudsen 수가 초소형 점성펌프에 미치는 영향 (EFFECTS OF THE REYNOLDS AND KNUDSEN NUMBERS ON THE FLOW OF A MICRO-VISCOUS PUMP)

  • 강동진;이벨리나이바노바이바노바
    • 한국전산유체공학회지
    • /
    • 제13권2호
    • /
    • pp.14-19
    • /
    • 2008
  • Effects of the Reynolds and Knudsen numbers on a micro-viscous pump are studied by using a Navier-Stokes code based on a finite volume method. The micro viscous pump consists of a circular rotor and a two-dimensional channel. The channel walls are treated by using a slip velocity model. The Reynolds number is studied in the range of $0.1{\sim}50$. The Knudsen number varies from 0.01 to 0.1. Numerical solutions show that the pump works efficiently when two counter rotating vortices formed on both sides of the rotor have the same size and intensity. As the Reynolds number increases, the size and intensity of the vortex on the inlet side of the pump decrease. It disappears when the Reynolds number is larger than about Re=20. The characteristics of the performance of the pump is shown to deteriorate, in terms of mean velocity and pressure rise, as the Reynolds number increases. The Knudsen number shows a different effect on the characteristics of the pump. As it increases, the mean velocity and pressure rise decrease but the characteristics of the vortex flow remains unchanged, unlike the effect of Reynolds number.

유체의 흐름이 있는 엔진 흡기계용 직조관의 음향 임피던스 측정 및 전달손실 예측 (Measurement of acoustic impedance of porous woven hoses in engine intake systems in the presence of mean flow)

  • 이정권;박철민
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.996-1000
    • /
    • 2002
  • A porous tube, comprised of a resin-coated woven fabric has recently been used as an effective component for use in intake systems of internal combustion engines to reduce the intake roaring. For the prediction of the acoustic performance of an engine intake system with a porous woven hose, the acoustic wall impedance of the hose must be known. Because of its peculiar acoustical and structural characteristics, the accurate measurement of the wall impedance ofa porous woven hose is not easy. A new measurement technique is proposed herein, that is valid over the low to mid frequency ranges. The acoustics impedance is inversely estimated from an overdetermined set of measured pressure transmission coefficients for specimens of different lengths and the reflection coefficient of end termination. The method involves only one measurement, and, as a result, it is very simple. The measured TL for samples with arbitrary conditions, arbitrary porous frequency, arbitrary length, and arbitrary mean flow condition, are in reasonably good agreement with values predicted from curve-fitted impedance data.

  • PDF

낙동강유역의 증발산량과 물수지 (Evapotranspiration and Water Balance in the Basin of Nakdong River)

  • 조희구;이태영
    • 물과 미래
    • /
    • 제8권2호
    • /
    • pp.81-92
    • /
    • 1975
  • Calculation of the monthly water balance for Nakdong River basin for the period from 1958 to 1968 is made by determining three components independently: precipitation, runoff and evapotranspiration. The areal precipitation is computed by the Thiessen method using the records of nine meteorological stations in the basin, and the runoff is the flow gauged at Jindong which is located on the most downstream. For the computation of evapotranspiration, the Morton method is adopted because this method is relatively fit best in the calculation of water balance among the Morton, Penman and Thornthwaite methods. The values of Morton evapotransp iration are corrected by the factor of 0.82 in the basin in order to bring the error to zero. The areal evapotranspiration is the arithmetic mean of the Morton estimates at the stations. Mean water balance components in the Nakdong river basin are 1117.0mm, 600.6mm and 516.4m for precipitation, runoff and evapotranspiration respectively. Accordingly, the mean runoff ratio comes out to be 0.54. The smallest values of runoff coefficient are due for Daegu area, while the largest ones are for the southwest of the basin with the higher rainfall and high elevations there. The amount of runoff obtained by both Thornthwaite and Budyko methods for water balance computations indicate 59 and 60 per cent of actual values which are lower than the expected. An attempt is made to find the best reliable rainfall-runoff relation among the four methods proposed by Schreiber, 01'dekop, Budyko and Sellers. The modified equation of Schreiber type for annual runoff coefficient could be obtained with the smallest mean error of 11 per cent.

  • PDF

임계노즐을 통한 비정상 기체유동의 초크현상에 관한 연구 (A Study on the Choke Phenomenon of Unsteady Gas Flow through a Critical Nozzle)

  • 김재형;김희동;박경암
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2127-2132
    • /
    • 2003
  • A computational study is performed to better understand the choke phenomenon of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Navier-Stokes equations are solved using a finite volume method. In order to simulate the effects of back pressure fluctuations on the critical nozzle flow, a forced sinusoidal pressure wave is assumed downstream the exit of the critical nozzle. It's frequency is 20kHz and amplitude is varied below 15% of time-mean back pressure. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thereby giving rise to applicable fluctuations of mass flow through the critical nozzle. The effect of the amplitude of the excited pressure fluctuations on the choke phenomenon is discussed in details.

  • PDF