• 제목/요약/키워드: McFarland turbidity

검색결과 1건 처리시간 0.014초

비열 유전체장벽방전 플라즈마의 포도상구균 및 대장균 살균효과 (Bactericidal Efficacy of Non-thermal DBD Plasma on Staphylococcus aureus and Escherichia coli)

  • 김기영;백남원;김용희;유관호
    • 한국산업보건학회지
    • /
    • 제28권1호
    • /
    • pp.61-79
    • /
    • 2018
  • Objectives: The objective of this study was to examine the effect of non-thermal dielectric barrier discharge(DBD) plasma on decontamination of Staphylococcus aureus(S. aureus) and Escherichia coli(E. coli) as common pathogens. Methods: This experiment was carried out in a chamber($0.64m^3$)designed by the authors. The plasma was continuously generated by a non-thermal DBD plasma generator(Model TB-300, Shinyoung Air tech, Korea). Suspensions of S. aureus and E. coli of 0.5 McFarland standard($1.5{\times}10^8CFU/mL$) were prepared using a Densi-Check photometer(bio $M{\acute{e}}rieux$, France). The suspensions were diluted1:1000 in sterile PBS solutions(approximately$10^{4-5}CFU/mL$) and inoculated on tryptic soy agar(TSA) in Petri dishes. The Petri dishes(80mm internal diameter)were exposed to the non -thermal DBD plasma in the chamber. Results: The results showed that 95% of S. aureus colonies were killed after a six-hour exposure to the DBD plasma. In the case of E. coli, it took two hours to kill 100% of the colonies. The gram-negative E. coli had a greater reduction than the gram-positive S. aureus. This difference may be due to the structure of their cell membranes. The thickness of gram-positive bacteria is greater than that of gram-negative bacteria. The S. aureus is more resistant to DBD plasma exposures than is E. coli. It should be noted that average concentrations of ozone, a byproduct of the DBD plasma generator, were monitored throughout the experiment and the results were well below the criteria, 50 ppb, recommended by the Korean Ministry of the Environment. Thus, non-thermal DBD plasma is deemed safe for use in hospital and public facilities. Conclusions: There was evidence that non-thermal DBD plasma can effectively kill S. aureus and E. coli. The results indicate that DBD plasma technology can greatly contribute to the control of infections in hospitals and other public and private facilities.