• Title/Summary/Keyword: Maxwell Model

Search Result 259, Processing Time 0.025 seconds

Analytical Solution of Magnetic Field in Permanent-Magnet Eddy-Current Couplings by Considering the Effects of Slots and Iron-Core Protrusions

  • Dai, Xin;Liang, Qinghua;Ren, Chao;Cao, Jiayong;Mo, Jinqiu;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.273-283
    • /
    • 2015
  • In this study, we propose an analytical model for studying magnetic fields in radial-flux permanent-magnet eddy-current couplings by considering the effects of slots and iron-core protrusions on the eddy currents. We focus on the analytical prediction of the air-gap field by considering the influence of eddy currents induced in conducting bars. In the proposed model, the permanent magnet region is treated as the source of a time-varying magnetic field and the moving-conductor eddy current problem is solved based on the resolution of time-harmonic Helmholtz equations. The spatial harmonics in the air gap and in slots, as well as the time harmonics are all considered in the analytical calculation. Based on the proposed field model, the electromagnetic torque is computed by using the Maxwell stress tensor method. Nonlinear finite element analysis is performed to validate the analytical model. The proposed model can be used for permanent-magnet eddy-current couplings with any slot-pole combination.

Influence of the Biodegradable Packaging Material on the Rheological Properties of Eggs (생분해성 포장재질이 달걀의 물성에 미치는 영향 연구)

  • Kim, Ji-Hyun;Park, Jong-Shin;Kim, Byung-Yong
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.525-530
    • /
    • 1997
  • The changes in rheological properties of egg white stored in biodegradable package were investigated by pH change, failure stress and stress relaxation curve, and compared with control without package and complex PE. Initial pH of egg white stored in biodegradable package changed from 8.39 to 9.3 after 8 day storage, showing similar trend in pH change as that of control without package. Initial 14.25 N failure stress was changed into 6.76 N in biodegradable package and 9.31 N in control. Complex PE, having a relatively low gas permeability compared to biodegradable package, showed less pH changes from 8.30 to 8.81, but a greater decrease in failure stress into 5.29 N, indicating more deteriorating effect in complex PE package. Viscoelastic constants, such as elastic constant and viscous constant, obtained from stress-relaxation curve by three element Maxwell model were not significantly different between control and biodegradable package, but eggs stored in complex PE showed greater changes during storage. Therefore, the permeability seems to be the major factors to influence the rheological properties of egg and biodegradable packaging materials showed a potential substitute package for eggs.

  • PDF

Studies on Rheological Properties of Rice Plants at the Booting Stage (이삭 밸 때 벼의 리올러지 특성(特性)에 관한 연구(硏究))

  • Hu, Y.K.;Lee, S.W.
    • Journal of Biosystems Engineering
    • /
    • v.16 no.1
    • /
    • pp.37-48
    • /
    • 1991
  • Rice plants are subjected to various forces such as natural force of wind and mechanical force of cultivating machines. Rheological behavior of the rice stem can be expressed in terms of three variables : stress, relaxation and time. The objectives of this study are to examine stress relaxation, creep and recovery characteristics on the rice stem in case of axial and radial loading. Stress relaxation with time was studied on three levels of loading rate and on four levels of applied stress. The results were summarized as follows : 1. The hysterisis losses of the rice stem distinctly observed at the radial compression in comparison with axial compression. The hysterisis loss implied that the stem to absorbed energy without being deformed beyond the yield point. 2. Ageneralized Maxwell model consisting of three elements gave a good description of the relaxation behavior of the rice stem. Rate of loading was more significant on the observed relaxation behavior within the short relaxation time, but there were little influences of rate of loading on the relaxation time. 3. The stress relaxation intensity and the residual stress increased in magnitude as the applied stress increased, but the relaxation time was little affected by the applied stress. 4. The coefficients of the stress relaxation model showed much differences in the radial compression and the axial compression, especially the higher relaxation stress of the third element was observed in the radial compression. 5. The behaviors of rice stem in creep and recovery test also might be represented by a four element Burger's model. But the coefficients of the creep model were different from those of the recovery model. 6. The steady-state phenomena of creep appeared at the stress larger than 20 MPa in Samkang and 1.8 MPa in Whajin. 7. The elastic modulus of the stem showed the range from 40 to 60 MPa. It could be considered, as a result, the rice stems had viscoelastic properties.

  • PDF

Creep Characteristics of Mudstone According to Stress Level and Water Content (응력수준 및 함수비에 따른 이암의 Creep 특성에 관한 연구)

  • Lee, Younghuy;Jeong, Ghangbok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.39-51
    • /
    • 2012
  • The time-dependent characteristics of mudstone in this study were analyzed by performing creep tests for the mudstone in Pohang. The creep tests were conducted on various boundary conditions to observe the time-dependent behavior of mudstone and the results were compared with values predicted by established visco-elastic model and empirical equations. As a result of analysis for empirical equations proposed by Griggs(1936), Cottrell(1952) and Singh(1975), the creep constants generally tend to increase as increasing the stress level and water content. Moreover, the values predicted by Singh's equation were well fitted for the test results. Therefore, it is expected to be reasonable that creep behavior of mudstone is analyzed using Singh's equation. As a result of analysis for a Burger's model, the predicted values were well fitted for the test results. Therefore, it is expected be reasonable that the creep behavior of mudstone by a rheological model is analyzed using Burger's model.

A Study on the Numerical Wave Propagation Properties of the Finite Difference-Time Domain(FD-TD) Method for EM Wave Problems (전자파 문제에 대한 시간영역-유한차분법의 수치파 전파모델의 성질에 관한 연구)

  • 김인석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1595-1611
    • /
    • 1994
  • In this paper, the numerical wave propagation properties of the finite difference-time domain(FD-TD) method is investigated as a discrete model describing electromagnetic(EM) wave propagation phenomena. The leap-frog approximation of Maxwell's curl equations in time-space simulates EM wave propagation in terms of the numerical characteristic and the domain of dependence. A geometrical interpretation of the FD-TD numerical procedure is presented. The numerical dispersion error due to the leap-frog approximation and its dependence on the stability factor are illustrated. The FD-TD method using the leap-frog approximation is inherently a descriptive model. Thus, not only any physical picture about EM wave propagation phenomena can be drawn through this model, but also physical or engineering parameters in the frequency domain can be extracted from descriptive results. E-plane filter characteristics in the WR-28 rectangular waveguide and reflection property of an inductive iris in the WR-90 rectangluar waveguide extracted from simulation of the FD-TD model is included.

  • PDF

A Study on Optimal Design for Linear Electromagnetic Generator of Electricity Sensor System using Vibration Energy Harvesting (진동에너지 하베스팅을 이용한 전력감지시스템용 리니어 전자기 발전기에 관한 최적설계)

  • Cho, Seong Jin;Kim, Jin Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.7-15
    • /
    • 2017
  • Recently, an electricity sensor system has been installed and operated to prevent failures and accidents by identifying whether a transformer is normal in advance of failure. This electricity sensor system is able to both measure and monitor the transformer's power and voltage remotely and send information to a manager when unusual operation is discovered. However, a battery is required to operate power detection devices, and battery systems need ongoing management such as regular replacement. In addition, at a maintenance cost, occasional human resources and worker safety problems arise. Accordingly, we apply a linear electromagnetic generator using vibration energy from a transformer for an electric sensor system's drive in this research and we conduct optimal design to maximize the linear electromagnetic generator's power. We consider design variables using the provided design method from Process Integration, Automation, and Optimization (PIAnO), which is common tool from process integration and design optimization (PIDO). In addition, we analyze the experiment point from the design of the experiments using "MAXWELL," which is a common electromagnet analysis program. We then create an approximate model and conduct accuracy verification. Finally, we determine the optimal model that generates the maximum power using the proven approximate kriging model and evolutionary optimization algorithm, which we then confirm via simulation.

Mesoscale modeling of the temperature-dependent viscoelastic behavior of a Bitumen-Bound Gravels

  • Sow, Libasse;Bernard, Fabrice;Kamali-Bernard, Siham;Kebe, Cheikh Mouhamed Fadel
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.509-524
    • /
    • 2018
  • A hierarchical multi-scale modeling strategy devoted to the study of a Bitumen-Bound Gravel (BBG) is presented in this paper. More precisely, the paper investigates the temperature-dependent linear viscoelastic of the material when submitted to low deformations levels and moderate number of cycles. In such a hierarchical approach, 3D digital Representative Elementary Volumes are built and the outcomes at a scale (here, the sub-mesoscale) are used as input data at the next higher scale (here, the mesoscale). The viscoelastic behavior of the bituminous phases at each scale is taken into account by means of a generalized Maxwell model: the bulk part of the behavior is separated from the deviatoric one and bulk and shear moduli are expanded into Prony series. Furthermore, the viscoelastic phases are considered to be thermorheologically simple: time and temperature are not independent. This behavior is reproduced by the Williams-Landel-Ferry law. By means of the FE simulations of stress relaxation tests, the parameters of the various features of this temperature-dependent viscoelastic behavior are identified.

Analysis of Starting Torque and Speed Characteristics for Squirrel Cage Induction Motor According to Material Properties of Rotor Slot

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.6
    • /
    • pp.328-333
    • /
    • 2015
  • Squirrel cage induction motors have mostly been used for their small capacity because the starting torque is smaller than the starting current during start-up. However, as more and more mid-to-large capacity motors are developed, the demands for improvements in performance characteristics have also increased. In this study, the starting characteristics of squirrel cage induction motors were analyzed based on the rotor materials and shapes using a finite element method to provide design data suitable for different use purposes and capacities. We further completed analysis by combining electromagnetic equations deduced from Maxwell’s equations and the circuit equations of stators and rotors. A moving coordinator was introduced to rotate the rotor during the analysis, and the torques calculated via the finite element method were combined with the motion equations to calculate the position and angular velocity of the rotors at the next time, thereby analyzing the transient characteristics. The analysis results of the transient characteristics were applied to a 3-phase 4-pole 5-hp induction motor to calculate the starting torque, speed, and rotation angle of the rotors. In the reference model, the materials and shapes of the rotor slot were changed to copper and silicon copper and a deep slot, shallow slot, and long-neck-shaped slot.

Analysis of Switched Reluctance Motors Characteristics using FEM (유한요소법을 이용한 SRM의 특성해석)

  • Lee, Joon-Ho;Lee, Hyang-Beom;Lee, Ki-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.139-141
    • /
    • 1996
  • The switched reluctance motors(SRM) are simple and robust in structure. Because the wide range of power and speed, their application field is increasing. In order to design the motors and to evaluate the performance of them properly, an accurate study about the analysis of motor characteristics is required. In this paper, for the analysis of SRM characteristics, the finite element method which is based on the solution of combined equations both the electromagnetic field equations and the circuit equations of stator is adopted. The analysis model is to he assumed two-dimensional and the nonlinear property of magnetic materials is considered by Newton-Raphson method. To verify the usefulness of the proposed algorithm, commercial SRM is chosen and simulated. The computed torques obtained by Maxwell Stress Tensor are compared with the experimental data and it is found that they are in good agreement. By applying the proposed algorithm to two cases, currents of stator and torques at every angular positions of rotor are obtained step by step. Comparing them, one can recognize that torque ripple of SRM can he improved by controlling the switching sequences of driving circuits.

  • PDF

Physical Properties of Microencapsulated Phase Change Material Slurries (미립잠열슬러리의 물성에 관한 실험적 연구)

  • 이효진;홍재창;이재구
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.860-869
    • /
    • 2000
  • The thermal conductivity and density of slurries entrained with the particles of Micro-PCM are measured with respect to its temperatures as well as concentrations. For the thermal conductivity of slurries, a device made from P.A. Hilton (Model No. H470) is adopted. There is a well-scaled 0.3 mm gap between shells into which the slurry is injected. The temperatures of the slurry are changed to $5~25^{\circ}C$ , for which it is controled by the supplied voltage and cooling water circulated around the outer shell. The concentrations of Micro-PCM slurries are varied from 5 wt% to 50 wt%. Some general equations such as Maxwell's equation, are evaluated for their applicability with Micro-PCM slurry. As a result, it happens to be some 20% discrepancy between the experiment and the applied equations. The density measurements of Micro-PCM slurry to its temperature and concentration are peformed by hydrometer. For the experiment, tetradecane encapsulated slurry (($t_m≒6^{\circ}C$) and a mixed wax ($t_m≒50^{\circ}C$) are tested. The temperature changes of tetradecane are applied for $0^{\circ}C\;to\;$20^{\circ}C$and a mixed wax for $20^{\circ}C\;to\;$60^{\circ}C$ and its concentrations are changed from 5 wt% to 30 wt%. The results are compared with a general equation and the referenced data. For the conclusion, the experimental result and a general equation are well agreed.

  • PDF