• Title/Summary/Keyword: Maxwell's equation

Search Result 98, Processing Time 0.027 seconds

Performance Characteristics of Tubular Linear Iduction Motor (동기형 직선유도전동기의 동작특성)

  • Lee, Eun-Ung
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.3
    • /
    • pp.153-162
    • /
    • 1987
  • The purpose of this paper is to analysis and develop theoretically the characteristics of tubular linear induction motor, which is a special industrial motor that generates directly thrust force from electrical power. The Poisson equation about vector potential which is created by the application of Maxwell electromagnetic equation with the speed considered, results in modified Bessel equation by the assumption that is applied to each region of the experimental motor. Vector potential, magnetic flux density, secondary current, and thrust force according to its region respectively were found out by substituting boundary condition for this equation and rearranging. Besides, a attendant materials, that is, thermal characteristic, which is one of the characteristics under the operation of experimental motor each part's magnetic flux distribution characteristics within active zone, the required time for reciprocating motion, and variation of power factor vs. a slip were found.

  • PDF

Calculation of Eddy Current Distribution in Conducting Bulk with Voltage Source (전압원이 인가된 도체 내에서의 와전류 분포 해석)

  • Kim, Do-Wan;Jeong, Hyeon-Gyo;Han, Song-Yeop
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.9-14
    • /
    • 2000
  • When current flows through a thick conductor such, most of the current flows along outside of the conductor, which is called skin effect. This paper represents a method calculating such a current distribution in the conductor region. The conductor region is divided into some pieces and each piece has its own unknown variable, i.e. current density. The governing equation which expresses Maxwell's equation is combined with the circuit equation with voltage source. The combined equation is solved to obtain current distribution in the conductor. This algorithm is applied to EMC(Electromagnetic Casting) to calculate current density with voltage source.

  • PDF

Mechanical performance analysis of an electromagnetic friction pendulum system based on Maxwell's principle

  • Mao Weikang;Li Xiaodong;Chen Enliang
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.143-154
    • /
    • 2024
  • Friction pendulums typically suffer from poor uplift-restraining. To improve the uplift-restraining and enhance the energy dissipation capacity, this article proposed a composite isolation device based on electromagnetic forces. The device was constructed based on a remote control system to achieve semi-active control of the composite isolation device. This article introduces the theory and design of an electromagnetic chuck-friction pendulum system (ECFPS) and derives the theoretical equation for the ECFPS based on Maxwell's electromagnetic attraction equation to construct the proposed model. By conducting 1:3 scale tests on the electromagnetic device, the gaps between the practical, theoretical, and simulation results were analyzed, and the accuracy and effectiveness of the theoretical equation for the ECFPS were investigated. The hysteresis and uplift-restraining performance of ECFPS were analyzed by adjusting the displacement amplitude, vertical load, and input current of the simulation model. The data obtained from the scale test were consistent with the theoretical and simulated data. Notably, the hysteresis area of the ECFPS was 35.11% larger than that of a conventional friction pendulum. Lastly, a six-story planar frame structure was established through SAP2000 for a time history analysis. The isolation performances of ECFPS and FPS were compared. The results revealed that, under horizontal seismic action, the horizontal seismic response of the bottom layer of the ECFPS isolation structure is greater than that of the FPS, the horizontal vibration response of the top layer of the ECFPS isolation structure is smaller than that of the FPS, and the axial force at the bottom of the columns of the ECFPS isolation structure is smaller than that of the FPS isolation structure. Therefore, the reliable uplift-restraining performance is facilitated by the electromagnetic force generated by the device.

Evaluation of Lateral Earth Pressure on Buried Pipes in Soft Ground Undergoing Lateral Movement (측방유동지반속 지중매설관에 작용하는 토압식 산정)

  • 홍원표;한중근;배태수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.55-65
    • /
    • 2002
  • Model tests were performed to investigate the mechanism of lateral earth pressure on a buried pipe, which was installed in a plastic flowing soil mass undergoing lateral movement. On the basis of failure mode tests, the equation of lateral earth pressure to apply Maxwell's visco-elastic model was proposed to consider the soil deformation velocity. Through a series of model tests of differential soil deformation velocity, lateral earth pressure of theoretical equation was compared with experimental results. When lateral soil movement was raised, the lateral earth pressure acting on buried pipe increases linearly with the soil deformation velocity. It shows that the lateral earth pressure on buried pipe is largely affected by soil deformation velocity. When plastic soil movement was raised, lateral earth pressure predicted by theoretical equation showed good agreement with experimental results. Also, coefficient of viscosity by theoretical equation had a good agreement with direct shear test results.

Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts

  • Eltaher, Mohamed A.;Omar, Fatema-Alzahraa;Abdraboh, Azza M.;Abdalla, Waleed S.;Alshorbagy, Amal E.
    • Smart Structures and Systems
    • /
    • v.25 no.2
    • /
    • pp.219-228
    • /
    • 2020
  • This work presents a modified continuum model to explore and investigate static and vibration behaviors of perforated piezoelectric NEMS structure. The perforated nanostructure is modeled as a thin perforated nanobeam element with Euler-Bernoulli kinematic assumptions. A size scale effect is considered by included a nonlocal constitutive equation of Eringen in differential form. Modifications of geometrical parameters of perforated nanobeams are presented in simplified forms. To satisfy the Maxwell's equation, the distribution of electric potential for the piezoelectric nanobeam model is assumed to be varied as a combination of a cosine and linear functions. Hamilton's principle is exploited to develop mathematical governing equations. Modified numerical finite model is adopted to solve the equation of motion and equilibrium equation. The proposed model is validated with previous respectable work. Numerical investigations are presented to illustrate effects of the number of perforated holes, perforation size, nonlocal parameter, boundary conditions, and external electric voltage on the electro-mechanical behaviors of piezoelectric nanobeams.

Numerical simulation of upper convected maxwell fluid flow through planar 4:1 contraction (평면 4:1 수축을 지나는 어퍼 콘벡티트 맥스웰유체 유동의 수치 시뮬레이션)

  • 송진호;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.1
    • /
    • pp.160-169
    • /
    • 1987
  • Numerical simulation of the flow of upper convected Maxwell fluid through planar 4:1 contraction has been performed using type dependent difference apprximation of vorticity equation. For creeping flow assumption, the numerical convergence has been achieved up to much higher values of elasticity parameter than those obtained by conventional finite difference method. For non-vanishing Reynolds number flow, it is shown that the corner vortices disappear, which is in good qualitative agreement with extant experimental results. In doing so, spatial distributions of stream function, vorticity and stresses are considered in relation to change of type of vorticity.

Characterization of linear microwave plasma according to conditions of TEM waveguide using fluid simulation

  • Seo, Gwon-Sang;Han, Mun-Gi;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.216-216
    • /
    • 2016
  • 마이크로웨이브를 이용한 플라즈마 소스의 경우 동작 압력 범위가 넓고 전자가열이 효율적이며, 낮은 이온에너지를 갖는 고밀도의 플라즈마를 발생시킬 수 있는 장점이 있어 최근 많은 연구가 되고 있다. 그 중에서 본 연구에 이용된 선형 안테나를 사용하는 마이크로웨이브 플라즈마 장치는 구성이 간단하고, 직 병렬 결합을 통해 고효율, 고밀도의 플라즈마 생성이 가능한 장점이 있다. 본 연구에서는 선형 안테나를 사용하는 마이크로웨이브 플라즈마 소스의 구조에 따른 특성 변화를 2차원 유체 시뮬레이션을 통하여 검증하였다. Maxwell's equation, Continuity equation, Electromagnetic wave equation 등을 이용해 동축관의 유전율과 Gap size에 따른 특성 변화를 관찰하였다. 동축 형태의 도파관을 따라 전달되는 Wave의 파장을 조절하도록 구조를 변화시켜 플라즈마 특성의 변화를 관찰하고 분석하였다.

  • PDF

Vibration Reaponse Analysis of frames with energy absober installed in Beams (보 제진 프레임의 진동응답해석)

  • Lee, Ho
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.159-166
    • /
    • 1997
  • The purpose of this thesis is to derive a theoretical model of the hysteretic resistance of the visco-elastic damper based on test results of harmonic excitation and to investigate of the basis of theory and experiment the effect of vibration control and response characteristics of portal frames degree vibration systems provided with the damper. The behaviour of a visco-elastic degree under dynamic loading is idealized by a model of the theory of visco-elasticity, i.e. a four-parameter model formed as a parallel combination of Maxwell fluid and Kelvin-Voigh models and its constitutive equation is derived. The model parameters are determined for a tested damper from the datas of harmonic excitation tests. The theoretical model of the damper is incorporated in equation fo motion of single degree of freedom. A computer program for solving the equation is written using Runge-kuttas's numerical integration scheme. Using this analysis program test cases of the earthquake excitation are simulated and the results of the simulation are the results of the simulation are the results of the simulation are compared with the test results.

  • PDF

Characteristics of Linear Microwave Plasma Using the Fluid Simulation and Langmuir Probe Diagnostics

  • Seo, Gwon-Sang;Han, Mun-Gi;Yun, Yong-Su;Kim, Dong-Hyeon;Lee, Hae-Jun;Lee, Ho-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.158.1-158.1
    • /
    • 2013
  • Microwave는 일반적으로 300 [MHz]~30 [GHz] 사이의 주파수를 가지는 전파로 1 [m] 이하의 파장을 가진다. Microwave를 이용한 플라즈마의 경우 낮은 이온 에너지, 효율적인 전자 가열, 넓은 동작압력 범위, 높은 밀도 등의 장점을 가지고 있어 PECVD(Plasma Enhanced Chemical Vapor Deposition)에 적합한 플라즈마 소스라고 할 수 있다. 또한 Microwave는 파장의 길이가 증착이 이루어지는 진공 챔버의 길이보다 매우 작기 때문에 대면적 적용성이 용이하므로 현재 많은 연구가 이루어지고 있다. 본 연구에서는 Fluid Simulation을 통해 Maxwell's equation, continuity equation, electromagnetic wave equation 등을 이용하여 Microwave의 파워 및 압력에 따른 플라즈마 parameter를 계산하고, 자체 제작한 Linear microwave plasma 장치에서 정전 탐침(Langmuir Probe)을 이용하여 플라즈마 Parameter를 측정하였다. 또한 Simulation 결과와 실험결과를 비교 분석하였다.

  • PDF

Analysis of cross-talk effects in volume holographic interconnections using perturbative integral expansion method

  • Jin, Sang-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.58-63
    • /
    • 1998
  • Cross-talk effects in high-density volume holographic interconnections are investigated using perturbative iteration method of the integral form of Maxwell's wave equation. In this method, the paraxial approximation and negligence of backward scattering introduced in conventional coupled mode theory is not assumed. Interaction geometries consisting of non-coplanar light waves and multiple index gratings are studied. Arbitrary light polarization is considered. Systematic analysis of cross-talk effects due to multiple index gratings is performed in increasing level of diffraction orders corresponding to successive iterations. Some numerical examples are given for first and third order diffraction.