• Title/Summary/Keyword: Maximum wind speed

Search Result 601, Processing Time 0.025 seconds

A Study on Variable Speed Limit Considering Wind Resistance on Off-Shore Bridge (해상교량의 풍하중을 고려한 제한 속도 도출 방안)

  • Lee, Seon-Ha;Kang, Hee-Chan
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.5
    • /
    • pp.75-87
    • /
    • 2004
  • Along the seashore regions in Korea, though strong winds with very large strength are frequently witnessed, no system which can provide appropriate speed information for driving vehicle has been introduced. The driving against strong winds could be very dangerous because of the high possibility of accidents such as rollover and collision. These accidents usually resulted from driver's forced driving try even in difficult situation for steering vehicle, and sometimes overspeed without consideration of wind impact to the vehicles. To reduce accident caused by strong winds, it is important to inform drivers of appropriate driving speeds by perceiving strong winds. By setting up WIS at the main points where strong winds frequently appear and using the variable message sign(VMS) connected to the on-line whether information system, it tis possible to provide desired speed information, which can maintain vehicles' tractive force and maximum running resistance. The case study is conducted on the case of Mokpo-Big-Bridge, which is under construction at Mokpo city. The result show that in case the annual average direction of wind is South and the wind speed is over 8m/hr, the desired speed, which is required in order for vehicles running to South direction to maintain the marginal driving power, is 60km/hr. In addition, for the case of a typhoon such as Memi generated in 2003 year, if wind speed had been 18m/sec in Mokpo city at that time, the running resistance at the speed of 40km/hr is calculated as 1131N. This resistance can not be overcome at the 4th gear(1054N) level, therefore, the gear of vehicles should be reduced down to the 3rd level. In this case, the appropriate speed is 40km/h, and at this point the biggest difference between running resistance and tractive force is generated.

Modeling of steady motion and vertical-plane dynamics of a tunnel hull

  • Chaney, Christopher S.;Matveev, Konstantin I.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.2
    • /
    • pp.323-332
    • /
    • 2014
  • High-speed marine vehicles can take advantage of aerodynamically supported platforms or air wings to increase maximum speed or transportation efficiency. However, this also results in increased complexity of boat dynamics, especially in the presence of waves and wind gusts. In this study, a mathematical model based on the fully unsteady aerodynamic extreme-ground-effect theory and the hydrodynamic added-mass strip theory is applied for simulating vertical-plane motions of a tunnel hull in a disturbed environment, as well as determining its steady states in calm conditions. Calculated responses of the boat to wind gusts and surface waves are demonstrated. The present model can be used as a supplementary method for preliminary estimations of performance of aerodynamically assisted marine craft.

On the Characteristics of the SO$_2$ Concentration Variation in Pusan, Korea (부산 지역의 SO$_2$ 농도 변화 특성에 관한 고찰)

  • 전병일;김유근;이화운
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.245-251
    • /
    • 1994
  • We considered that characteristics of SO$_2$, concentration level and relations of the meteorological parameters and high pollution concentration from the data measured 7 air quality continuous monitoring stations during 4 years, from 1990 to 1993 in Pusan. The SO$_2$ concentration level showed decreasing trend yearly, it was maximum in Winter, minimum in Summer. The time of SO$_2$ peak concentration lagged from seashore to land because of break-down of the nocturnal inversion layer and seabreeze. Ihe correlations of daily SO$_2$, value between various air quality continuous monitoring stations were highest between Beomcheondong and Meongryundong, lowest between Daeyeondong and Sinpyeongdong because of difference of air Pollution emission sources characteristic. The meteorological parameters affecting SO$_2$ concentration level were minimum temperature, relative humidity, wind speed and air pressure. The SO$_2$ high pollution($\geq$95ppb) occurred almost in Winter, particulaly in such day showing lower wind speed and higher air pressure. Elementary SO$_2$ high Pollution Predictor were high pressure system and stability of lower atmosphere.

  • PDF

Characteristics of nocturnal maximum ozone and meteorological relevance in Pusan coastal area (부산 연안역의 야간 고농도 오존 발생 특성과 기상학적 관련성)

  • 전병일
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.287-292
    • /
    • 1999
  • This study was performed to investigate the characteristics of nocturnal maxiumu ozone occurrence and the meteorological relevance using to hourly ozone data and meteorological data for 1995~1996 in Pusan coastal area. Kwangbokdong showed the highest occurrence of nocturnal maximum ozone as 36.9%, and Deokcheondong showed the lowest occurrence(9.2%) for research period in Pusan. The occurrence rates of nocturnal maximum ozone concentration were decreased toward land area. The low maximum temperature, high minimum temperature, low diurnal range, high relative humidity, high wind speed, high could amount, low sunshine and low radiation were closely related to the main meteorological characteristics occuring the nocturnal maximum concnetration of ozone. It was shown that normal daily variation of ozone concentration by strong photochemical reaction at the before day of nocturnal maximum ozone. The concnetration of nocturnal maximum ozone were occured by entrainment of ozone from the upper layer of developed mixing layer. There are no ozone sources near the ground at night, so that the nighttime ozone should be entrained from the upper layer by forced convection.

  • PDF

Observation on Structural Change of Low Level Atmosphere due to Effect of Sea Breeze (해풍 효과에 의한 저층대기구조 변화의 측정)

  • 전병일;김유근
    • Journal of Environmental Science International
    • /
    • v.5 no.4
    • /
    • pp.441-451
    • /
    • 1996
  • The surface meteorological and upper layer meteorological observation carried out to investigate influences of sea breeze effect on lower layer atmosphere at Gori nuclear power plant for 29∼30 July, 1996. According to surface meteorological data, the inflow of sea breeze was occurred 11:30 on 29 July, 10:30-on 30 July, respectively, at observation site. And the meteorological tower data showed that wind direction of sea breeze was identified as south-westerly, and wind speed of 58 m was 2 times stronger than that of 10 m. It is notworthy that surface inversion layer which built from the night time to daybreak of next day was not broken off by seab reeze's inflow for daytime, and strong inversion layer observed at 47∼243 m with moderately stable class (F) by URC. It was found that strong stable layer of potential temperature appeared at that layer, maximum relative humidity observed at the bottom of inversion layer and maximum mixing ratio observed in the low of inversion layer.

  • PDF

Design Optimization of the Support Frame of an Antenna Positioner Mounted on a Vehicle (차량 탑재형 안테나 포지셔너의 반사판 지지대 최적설계)

  • Jang, Taeho;Kim, Youngshik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.411-416
    • /
    • 2014
  • In this research we present design optimization methods for a vehicle-mounted satellite antenna positioner. Our initial antenna positioner was conservatively designed to satisfy a worst case scenario where wind blew across the positioner at the speed of 120 km/h. Investigating stresses and safety based on Finite Element Methods (FEM), we find reflector support frames can be optimized to significantly reduce the weight of the positioner system. Thus, we optimize the reflector support frame from the given initial design while considering weight, maximum stress, maximum allowable deflection, cross section, and thickness. As a result, Shape C and the thickness of 2 mm are determined for the cross section of the reflector support frame. Applying this result, the weight of the new antenna positioner is 57.343 kg, which is decreased by 10.74% compared to the initial conservative design.

Assessment of Anti-Scattering Effect by Aluminium Sulfate (황산알루미늄수화물에 의한 비산방지 효과 평가)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.470-474
    • /
    • 2010
  • Various anti-scattering agents for suppression of dust scattering at waste depository were compared in this study. Based on the price, easy of usage, and no toxicity, 1% of $Al_2(SO_4)_3$ was selected as surface hardening agents. Only lower than 2% of total weight were flied when wind speed was monthly maximum velocity during 1 hr. These results were quite good with comparison of S anti-scattering agents which was made by C company in Korea. When $Al_2(SO_4)_3$ was spread, the surface waste became hard therefore the effect of suppression of scattering dust was long lasting. It was recommend that 2% of $Al_2(SO_4)_3$ was spread to keep suppression of scattering dust when sudden gust of wind such as natural disaster was occurred.

Climatological variability of surface particulate organic carbon (POC) and physical processes based on ocean color data in the Gulf of Mexico

  • Son, Young-Baek;Gardner, Wilford D.
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.235-258
    • /
    • 2011
  • The purpose of this study is to investigate climatological variations from the temporal and spatial surface particulate organic carbon (POC) estimates based on SeaWiFS spectral radiance, and to determine the physical mechanisms that affect the distribution of pac in the Gulf of Mexico. 7-year monthly mean values of surface pac concentration (Sept. 1997 - Dec. 2004) were estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data. Synchronous 7-year monthly mean values of remote sensing data (sea surface temperature (SST), sea surface wind (SSW), sea surface height anomaly (SSHA), precipitation rate (PR)) and recorded river discharge data were used to determine physical forcing factors. The spatial pattern of POC was related to one or more factors such as river runoff, wind-derived current, and stratification of the water column, the energetic Loop Current/Eddies, and buoyancy forcing. The observed seasonal change in the POC plume's response to wind speed in the western delta region resulted from seasonal changes in the upper ocean stratification. During late spring and summer, the low-density river water is heated rapidly at the surface by incoming solar radiation. This lowers the density of the fresh-water plume and increases the near-surface stratification of the water column. In the absence of significant wind forcing, the plume undergoes buoyant spreading and the sediment is maintained at the surface by the shallow pycnocline. However, when the wind speed increases substantially, wind-wave action increases vertical motion, reducing stratification, and the sediment were mixed downward rather than spreading laterally. Maximum particle concentrations over the outer shelf and the upper slope during lower runoff seasons were related to the Loop Current/eddies and buoyancy forcing. Inter-annual differences of POC concentration were related to ENSO cycles. During the El Nino events (1997-1998 and 2002-2004), the higher pac concentrations existed and were related to high runoffs in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico. During La Nina conditions (1999-2001), low Poe concentration was related to normal or low river discharge, and low PM/nutrient waters in the eastern Gulf of Mexico, but the opposite conditions in the western Gulf of Mexico.

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (I): with and without Turbulent Inflow (수평축 풍력터빈의 공력 하중 비교 (I): 난류 유입 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2016
  • This study focused on the aerodynamic loads of the horizontal axis wind turbine blade due to the normal turbulence inflow condition. Normal turbulence model (NTM) includes the variations of wind speed and direction, and it is characterized by turbulence intensity and standard deviation of flow fluctuation. IEC61400-1 recommends the fatigue analysis for the NTM and the normal wind profile (NWP) conditions. The aerodynamic loads are obtained at the blade hub and the low speed drive shaft for MW class horizontal axis wind turbine which is designed by using aerodynamically optimized procedure. The 6-components of aerodynamic loads are investigated between numerical results and load components analysis. From the calculated results the maximum amplitudes of oscillated thrust and torque for LSS with turbulent inflow condition are about 5~8 times larger than those with no turbulent inflow condition. It turns out that the aerodynamic load analysis with normal turbulence model is essential for structural design of the wind turbine blade.

A Study on the Bow Collapse of High-Speed Passenger Craft in Collision with Bridge Pier (고속 여객선의 교각 충돌에 대한 연구)

  • 신영식;박명규
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • During the last 10 years, the various type of high speed craft have been greatly developed, and since around of 1990 the large size of high speed passenger and/or cargo vessels are also introduced and took into the service in the various routes over the world. In a marine traffic way some bridge need to build across a rivers, cannals or a waterways. This one will be an obstruction and potential risk of collision in the way of high speed craft. Accordingly some of collision accident have been reported, which were caused by a lost control, wind and hydrodynamic forces, fog or human errors. In this paper a high speed craft having 40 m length is assumed to be collided with a circular type of bridge piers at right angle. The mode of deformation, penetration depth of collapse, impact forces, reduction of speed, loss of kinetic energy, and influence of scantlings, etc. have been calculated in each speed with a time variation to find a maximum values within a limit, and are graphically presented.

  • PDF