• Title/Summary/Keyword: Maximum wind speed

Search Result 601, Processing Time 0.029 seconds

Estimation on the Radius of Maximum Wind Speed using RSMC Best Track Data (RSMC 최적경로 자료를 이용한 태풍의 최대풍속반경 산정)

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hongyeon;Jun, Ki Cheon;Kim, Yoon Chil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.5
    • /
    • pp.291-300
    • /
    • 2013
  • Typhoon simulation method is widely used to estimate sea surface wind speeds during the typhoon periods. Holland (1980) model has been regarded to provide relatively better results for observed wind data. JTWC or RSMC best track data are available for typhoon modeling, but these data show slightly different because the data generation process are different. In this paper, a Newton-Raphson method is used to solve the two nonlinear equations based on the Holland model that is formed by the two typhoon parameters, i.e. the longest radius of 25 m/s and 15 m/s wind speeds, respectively. The solution is the radius of maximum wind speed which is of importance for typhoon modeling. This method is based on the typhoon wind profile of JMA and it shows that Holland model appears to fit better the characteristics of typhoons on the temporal and spatial changes than that of the other models. In case of using RSMC best track data, the method suggested in this study shows better and more reasonable results for the estimation of radius of maximum wind speed because the consistency of the input data is assured.

Study on wind-induced vibration response of Jiayuguan wooden building

  • Teng Y. Xue;Hong B. Liu;Ting Zhou;Xin C. Chen;Xiang Zhang;Zhi P. Zou
    • Wind and Structures
    • /
    • v.37 no.3
    • /
    • pp.245-254
    • /
    • 2023
  • In this paper, the wind-induced response of Jiayuguan wooden building (world cultural heritage) in Northwest China was studied. ANSYS finite element software was used to establish four kinds of building models under different working conditions and carry out modal analysis. The simulation results were compared with the field dynamic test results, obtaining the model which reflects the real vibration characteristics of the wooden tower. Time history data of fluctuating wind speed was obtained by MATLAB programming. Time domain method and ANSYS were used to analyze the wind-induced vibration response time history of Jiayuguan wooden building, obtaining the displacement time history curve of the structure. It was suggested that the wind-induced vibration coefficient of Jiayuguan wooden building is 1.76. Through analysis of the performance of the building under equivalent static wind load, the maximum displacement occurs in the three-story wall, gold column and the whole roof area, and the maximum displacement of the building is 5.39 cm. The ratio of the maximum stress value to the allowable value of wood tensile strength is 45 %. The research results can provide reference for the wind resistant design and protection of ancient buildings with similar structure to Jiayuguan wooden tower.

Analysis of the Relationship Between the Characteristics of the Wind Damaged Trees and the Wind Caused by Typhoon 'Kompasu' (태풍 곤파스에 의해 발생한 풍도목 특성과 바람과의 관계 분석)

  • Youn, Ho Joong;Park, Ki Hyung;Lee, Myungbo;Won, Myoungsoo;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.246-255
    • /
    • 2011
  • This study was carried out to investigate the characteristics of wind damaged trees in the Hongneung Arboretumin Korea. Many trees in the Hongneung Arboretum were damaged by the 'Kompasu', the seventh typhoon in the year of 2010 having strong impacts on the central region of Korea. Damaged trees were divided into 3 damage types: windthrow, slanted and broken trees. Most of damaged trees (97.3%) were found at low slope (below 15 degree) or medium slope (15~20 degree). The 45.3% of damaged trees were coniferous and 54.7% were deciduous trees. The wind speed was recorded for the duration of the typhoon from 04:00 AM to 12:00 PM on September 2. The average wind speed and the maximum instantaneous wind speed inside the forest were 1.4 m/sec and 3.5 m/sec, respectively. The highest peak of the average and the maximum instantaneous wind speed inside of forest, 3.4 m/sec and 8.7 m/sec respectively, were recorded at 06:10 AM on September 2. To analyze relationship between wind characteristics and the damage types, the average wind speed and the frequency of wind wave was compared to those of pre-typhoon period (Feb. 13, Feb. 20, Apr. 21, Oct. 16, 2009 and Mar. 20, 2010). The results indicated that the damaged trees were affected by frequent wind wave rather than the wind speed itself. Also average wind direction inside the forest was analyzed to investigate the impact of wind direction on the damaged trees. The wind had mainly blown from SE and SW, and the maximum instantaneous wind direction was SE direction overall. Most of the damaged trees (84.0%) had fallen down to the NW or NE direction. This result showed that the fallen direction of the damaged trees and wind direction was highly related. Therefore, we found that the frequency of wind wave was the main factor of wind damages during the typhoon 'Kompasu' and wind direction was highly related to the fallen direction.

Pitch Angle Controller of Wind Turbine System Using Neural Network (신경망을 이용한 풍력 발전시스템의 피치제어)

  • Hong, Min-Ho;Ko, Seung-Youn;Kim, Ho-Chan;Hur, Jong-Chul;Kang, Min-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1059-1065
    • /
    • 2014
  • Wind turbine system can obtain the maximum wind energy using torque control under the rated wind speed, and wind turbine power is controlled as the rated power using pitch control over the rated wind speed. In this paper, we present a method for wind turbine pitch controller using neural networks. The purpose of the pitch control is to control generator speed and power in the above rated wind speed. To improve the neural network pitch controller, the difference between a rated and current speed of generator has been used for another input of neural networks as well as wind speed. Error back-propagation algorithm is used for training the neural network pitch controller and simulation and Matlab/Simulink is used for verifying that this system is controlled well.

Climatological Spatio-Temporal Variation of Strong Wind in Korea (우리나라 강풍의 기후학적 시공간 변화 특성)

  • Kim, Hyun Uk;Kim, Baek-Jo;Nam, Hyoung-Gu;Jung, Jong Hyeok;Shim, Jae-Kwan
    • Atmosphere
    • /
    • v.30 no.1
    • /
    • pp.47-57
    • /
    • 2020
  • In this study, the climatological spatio-temporal variation of strong wind and gust wind in Korea during the period from 1993 to 2018 was analyzed using daily maximum wind speed and daily maximum instantaneous wind speed data recorded at 61 observations. Strong wind and gust wind were defined as 14 m s-1 and 20 m s-1, which are the same as the KMA's criteria of special weather report. The frequency of strong wind and gust wind occurrence was divided into regions with the higher 25 percent (Group A) and the lower 75 percent (Group B). The annual frequency of strong wind and gust wind occurrence tended to be decreased in most parts of the Korean peninsula. In Group A with stations located at coastal region, strong wind and gust wind occurred most frequently in winter with higher frequency at 1200~1600 LST and 2300~2400 LST due to influence of East Asian winter monsoon. In addition, a marked decreasing trend throughout the four seasons was shown at Daegwallyeong, Gunsan and Wando observations. In contrast, it can be found in Group B that the monthly frequency of strong wind and wind gust occurrence was higher in August and September by effect of typhoon and hourly frequency was higher from 1200 LST to 1800 LST.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • v.25 no.6
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

Uncertainty Analysis on Wind Speed Profile Measurements of LIDAR by Applying SODAR Measurements as a Virtual True Value (가상적 참값으로써 소다 측정자료를 적용한 라이다에 의한 풍속연직분포 측정의 불확도 분석)

  • Kim, Hyun-Goo;Choi, Ji-Hwi
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.4
    • /
    • pp.79-85
    • /
    • 2010
  • The uncertainty in WindCube LIDAR measurements, which are specific to wind profiling at less than 200m above ground levelin wind resource assessments, was analyzed focusing on the error caused by its volume sampling principle. A two-month SODAR measurement campaign conducted in an urban environment was adopted as the reference wind profile assuming that various atmospheric boundary layer shapes had been captured. The measurement error of LIDAR at a height z was defined as the difference in the wind speeds between the SODAR reference data, which was assumed to be a virtually true value, and the numerically averaged wind speed for a sampling volume height interval of $z{\pm}12.5m$. The pattern of uncertainty in the measurement was found to have a maximum in the lower part of the atmospheric boundary layer and decreased with increasing height. It was also found that the relative standard deviations of the wind speed error ratios were 6.98, 2.70 and 1.12% at the heights of 50, 100 and 150m above ground level, respectively.

Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink (Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션)

  • Ahn Duck-Keun;Ro Kyoung-Soo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.

Analysis on the Train-wind Pressure applied to Screen Door in Island-type Platform of Subway (지하철의 섬식 정거장에 설치된 스크린도어에 가해지는 열차풍압 해석)

  • Kim, Jung-Yup
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.138-141
    • /
    • 2008
  • The screen doors installed in the station of subway are subject to the train-wind pressure caused by the operation of trains. The train-wind pressure has to be correctly estimated for the design of safe structure of screen doors. As three-dimensional numerical flow analysis technology has been significantly developed, the analysis on the train-wind pressure with diverse variables such as train specifications, train speed, tunnel and station configurations, and blockage ratio can be effectively carried out with three-dimensional numerical method. In this study, computational analysis of train-induced wind in a subway tunnel employing the screen doors are carried out by using the three-dimensional numerical method with the model of the moving boundary for the run of trains. While the numerical analysis of train-wind pressure was applied on the one island-type station in the Seoul Subway Line 2, maximum pressure of 494 Pa was estimated on the screen door when two trains pass each other at the speed of 80km/h in the platform.

  • PDF

Analyses of the Meteorological Characteristics over South Korea for Wind Power Applications Using KMAPP (고해상도 규모상세화 수치자료 산출체계를 이용한 남한의 풍력기상자원 특성 분석)

  • Yun, Jinah;Kim, Yeon-Hee;Choi, Hee-Wook
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • High-resolution wind resources maps (maps, here after) with spatial and temporal resolutions of 100 m and 3-hours, respectively, over South Korea have been produced and evaluated for the period from July 2016 to June 2017 using Korea Meteorological Administration (KMA) Post Processing (KMAPP). Evaluation of the 10 m- and 80 m-level wind speed in the new maps (KMAPP-Wind) and the 1.5 km-resolution KMA NWP model, Local Data Assimilation and Prediction System (LDAPS), shows that the new high-resolution maps improves of the LDAPS winds in estimating the 10m wind speed as the new data reduces the mean bias (MBE) and root-mean-square error (RMSE) by 33.3% and 14.3%, respectively. In particular, the result of evaluation of the wind at 80 m which is directly related with power turbine shows that the new maps has significantly smaller error compared to the LDAPS wind. Analyses of the new maps for the seasonal average, maximum wind speed, and the prevailing wind direction shows that the wind resources over South Korea are most abundant during winter, and that the prevailing wind direction is strongly affected by synoptic weather systems except over mountainous regions. Wind speed generally increases with altitude and the proximity to the coast. In conclusion, the evaluation results show that the new maps provides significantly more accurate wind speeds than the lower resolution NWP model output, especially over complex terrains, coastal areas, and the Jeju island where wind-energy resources are most abundant.