• Title/Summary/Keyword: Maximum wave height

Search Result 185, Processing Time 0.027 seconds

Analysis of Change Process in the Design Conditions of Harbor Breakwaters in Korea (우리나라 항만 방파제 설계조건의 변화과정 분석)

  • Hong, Keun;Kang, Yoon-Koo;Kim, Hong-Jin;Yoon, Han-Sam;Ryu, Cheong-Ro
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.3
    • /
    • pp.123-133
    • /
    • 2018
  • We studied the change process in the design parameters (conditions) of structural sections of vertical/slope breakwaters in Korea over the long term based on an analytical review of the latest design recommendations. This study found the following. 1) Design wave heights have increased gradually with the increase in the wave height of deep sea waves. 2) The relative design wave height ($H_{1/3}/h$) changed from 0.5 in the 1970s to 0.6~0.7 today. This means that design wave heights are overestimated compared with the water depth. 3) Before 1999, the design water level was based on high water during an average spring tide, but this has been increased since 2000 because of additional consideration of anomalous sea levels. 4) Before 1999, the relative crest heights of the investigated breakwaters was 0.6~0.7, but after 1999 this increased to a mean of 1.0 and maximum of 1.26.

A Study on Experimental Method of Impulse turbine for OWC-type Wave Energy Conversion (파력발전용 임펄스터빈의 모형시험 기법연구)

  • LEE YOUNG-YEON;HONG SEOK-WON;HYUN BEOM-SOO
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.268-273
    • /
    • 2004
  • A study on experimental method of the model test for the impulse turbine is carried out. the wave simulator is used to reproduce the real wave condition. It controls two parameter correspond to wave height and wave frequency. The optimum design which is reported by T. Setoguchi is manufactured and tested for the validation of our test facilities. The comparison of model test show that our facilities produce little bit higher efficiency at maximum efficiency point. To increase the efficiency of turbine, the new rotor with negative tip clearance is designed and being tested.

  • PDF

A study on stability of rear side armor with maximum overtopping (최대월파량의 발생에 따른 사석방파제 배후면 피복석의 안정성에 관한 연구)

  • Ryu, Cheong-Ro;Kim, Hong-Jin;Cheoi, Jong-Wook;Kim, Heon-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.121-127
    • /
    • 2003
  • Wave overtopping is one of the most important hydraulic responses of breakwater because it significantly affects its functional efficiency, the safety of transit and mooring on the rear side, wave transmission in the sheltered area, rear side armor stones and to some extent, the structural safety itself. In this study, hydraulic model tests has been carried out to investigate the influence of berm's size on overtopping rate by maximum overtopping rate and mean overtopping rate. The hydrodynamic characteristics of berm breakwater by the overtopping rate can be summarized as follows: 1. It is better to use maximum overtopping rate than to use mean overtopping rate for design of coastal structures in the point of view of stability. 2. When construct berm to decrease energy of waves that it was needed to make breaking conditions of wave on the berm. 3. Under the relative length of berm was over 0.13 overtopping rate was significantly decreased. 4. Overtopping rate affected significantly by the relative length of yhe berm than height of the berm.

  • PDF

Influence of Fluid Height and Structure width ratio on the Dynamic Behavior of Fluid in a Rectangular Structure (사각형 구조물에 저장된 유체의 동적거동에 유체높이와 구조물 폭의 비가 미치는 영향)

  • Park, Gun;Yoon, Hyungchul;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.126-134
    • /
    • 2020
  • In the case of an earthquake, the fluid storage structure generates hydraulic pressure due to the fluctuation of the fluid. At this time, the hydraulic pressure of the fluid changes not only the peaked acceleration of the earthquake but also the sloshing height of the fluid free water surface. Factors influencing this change in load include the shape of the seismic wave, the maximum seismic strength, the size of the fluid storage structure, the width of the structure, and the height of the fluid. In this study, the effect of the ratio between the height of the fluid and the width of the structure was investigated on the fluctuation characteristics of the fluid. 200mm and 140mm of fluid were placed in a water storage tank with a width of 500mm, and a real seismic wave was applied to measure the shape of the fluctuation of the fluid free water surface. The similarity between the experiment and the analysis was verified through the S.P.H(Smoothed Particle Hydrodynamic) technique, one of the numerical analysis techniques. It was confirmed that the free water surface of the fluid showed a similar shape, through comparison of experiment and analysis. And based on this results, SPH technique was applied to analyze the fluctuation shape of the fluid free water surface while varying the ratio between the fluid height and the structure width. An equation to predict the maximum and minimum heights of the fluid free water surface during an earthquake was proposed, and it was confirmed that the error between the maximum and minimum heights of the fluid free water surface predicted by the proposed equation was within a maximum of 3%.

The Experimental Study of Distribution Characteristics of Lift-force Acting under Pier Deck (잔교상판(棧橋床板)에 작용(作用)하는 양압력(揚壓力) 분포특성(分布特性)에 관한 실험적(實驗的) 연구(硏究))

  • Park, Sang Kil;Park, Hyun Soo;Ahn, Ik Seong;Kim, Woo Saeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1B
    • /
    • pp.83-90
    • /
    • 2009
  • This study describes the characteristics of distribution of lift-force acting under pier deck through physical experiment. The shape of peak wave pressure was sharp when compressed air existed but was not sharp without that. Values of lift-force was different between edge point and center point in the same block. Distribution of lift-force was expressed differently owing to dimensionless of deck length (l/L), wave steepness (H/L), clearance height per wave height (D/H). The dimensionless factor of D/H affected on the lift-force the clearance between still water surface and decks. This decided the maximum of lift-force. In the case of the same values of D/H, the lift-force are changed by the wave steepness (H/L). Because (D/H) become smaller as the wave steepness (H/L) is increased the height of decks must be decided with the condition which don't have the clearance with $D_{max}$ for the stable design of deck of pier. Effect of reducing lift force was greater in the on-shore than the off-shore according to compressed air existence. This researches points out that design of deck should retain compressed air in order to reduce wave lift force.

Uncertainty Analysis of Wave Forces on Upright Sections of Composite Breakwaters (혼성제 직립벽에 작용하는 파력의 불확실성 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.3
    • /
    • pp.258-264
    • /
    • 2011
  • A MCS technique is represented to stochastically analyze the uncertainties of wave forces exerted on the upright sections of composite breakwaters. A stochastical models for horizontal and uplift wave forces can be straightforwardly formulated as a function of the probabilistic characteristics of maximum wave height. Under the assumption of wave forces followed by extreme distribution, the behaviors of relative wave forces to Goda's wave forces are studied by the MCS technique. Double-truncated normal distribution is applied to take the effects of uncertainties of scale and shape parameters of extreme distribution into account properly. Averages and variances of relative wave forces are quantitatively calculated with respect to the exceedance probabilities of maximum design wave height. It is found that the averages of relative wave forces may be decreased consistently with the increases of the exceedance probabilities. In particular, the averages on uplift wave force are evaluated slightly larger than those on horizontal wave force, but the variations of coefficient of the former are adversely smaller than those of the latter. It means that the uncertainties of uplift wave forces are smaller than those of horizontal wave forces in the same condition of the exceedance probabilities. Therefore, the present results could be useful to the reliability based-design method that require the statistical properties about the uncertainties of wave forces.

Effect of Pasternak foundation: Structural modal identification for vibration of FG shell

  • Hussain, Muzamal;Selmi, Abdellatif
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.569-576
    • /
    • 2020
  • Employment of the wave propagation approach with the combination of Pasternak foundation equation gives birth to the shell frequency equation. Mathematically, the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is placed on the elastic foundation of Pasternak. For isotropic materials, the physical properties are same everywhere, whereas the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of the elastic foundation, wave number, length and height-to-radius ratios is investigated with different boundary conditions. The frequencies of length-to-radius and height-to-radius ratio are counter part of each other. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down for the variations of wave number. It is found that due to inducting the elastic foundation of Pasternak, the frequencies increases. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. MATLAB software is utilized for the vibration of functionally graded cylindrical shell with elastic foundation of Pasternak and the results are verified with the open literature.

A Study on the Concentration of Wave Energy by Construction of a Submerged Coastal Structure (해저구조물 설치에 따른 파랑에너지 집적에 관한 연구)

  • Gug, S.G.;Lee, J.W.
    • Journal of Korean Port Research
    • /
    • v.6 no.1
    • /
    • pp.69-91
    • /
    • 1992
  • A new type of horizontal submerged break water or fixed structure to control waves near coastal area is introduced to focus wave energy before or behind it. Intentionally, the water depth near the structure is changed gradually to get a refraction and diffraction effect. The concentration of wave energy due to the structure was analyzed for the selected design of structure. The shape of the submerged structure in consideration is a circular combined with elliptical curve not to cause reflection of waves at the extreme edge of the structure but cause wave scattering. The direction of the structure against the incident wave is changed easily in the model Applying a regular wave train the following were examined. 1) whether a crescent plain submerged structure designed by the wave refraction theory can concentrate wave energy at a focal zone behind and before it without wave breaking phenomenon. 2) Location of maximum wave amplification factor in terms of the incident wave direction, wave period, etc. In any event the study would contribute to control waves near coastal area and to protect a beach from erosion without interruption of ocean view it is an useful study for the concentration of wave energy efficiently with the increase of wave height.

  • PDF

A Study on the Roll Motion of a Ship in a Transient Irregular Wave (설계불규칙파중에서 선박의 횡동요에 관한 연구)

  • Han, Ju-Chull;Lee, Seung-Keon;Ha, Tae-Phil
    • Journal of Navigation and Port Research
    • /
    • v.28 no.5
    • /
    • pp.353-358
    • /
    • 2004
  • A transient irregular wave was designed based on ISSC spectrum The designed wave was generated in the towing tank and ,the roll motion of a model was measured A method to predict the maximum roll motion, expected in the short-term sea state, was investigated with comparison of the theoretical and experimental results.

Correlation Analysis between Wave Parameters using Wave Data Observed in HeMOSU-1&2 (HeMOSU-1&2의 파랑 관측 자료를 이용한 파랑 변수 간 상관관계 분석)

  • Lee, Uk-Jae;Ko, Dong-Hui;Cho, Hong-Yeon;Oh, Nam-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.4
    • /
    • pp.139-147
    • /
    • 2021
  • In this study, waves were defined using the water surface elevation data observed from the HeMOSU-1 and 2 marine meteorological observation towers installed on the west coast of Korea, and correlation analysis was performed between wave parameters. The wave height and wave period were determined using the wave-train analysis method and the wave spectrum analysis method, and the relationship between the wave parameters was calculated and compared with the previous study. In the relation between representative wave heights, most of the correlation coefficients between waves showed a difference of less than 0.1% in error rate compared to the previous study, and the maximum wave height showed a difference of up to 29%. In addition, as a result of the correlation analysis between the wave periods, the peak period was estimated to be abnormally large at rates of 2.5% and 1.3% in HeMOSU-1&2, respectively, due to the effect of the bimodal spectrum that occurs when the spectral energy density is small.