• Title/Summary/Keyword: Maximum transmission throughput

Search Result 102, Processing Time 0.032 seconds

A Hierarchical Multicast Routing Protocol based on Zone Routing Technique for Wireless multi-hop Network (무선 다중 홉 네트워크에서의 지역 기반의 계층적 멀티캐스트 라우팅 프로토콜)

  • Gui, Yi-Qi;Zhang, Jie;Yang, Dong-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.3
    • /
    • pp.149-156
    • /
    • 2011
  • In wireless multi-hop network, many applications need multicast communication where the group leader needs to send data to all members of the group. Multicast routing provides a balanced, efficient, and fairness network environment for the group members. However, large load for transmission management to leader node and signal interference between several paths for multi-hop links always took long transmission delay and low throughput efficiency. In this paper, we propose a Zone-based Hierarchical Multicast Routing Protocol (ZHMP). This routing protocol is designed based on zone routing schemes, where proactive routing is applied for intra-zone node level multicasting and reactive routing is used for searching inter-zone paths. By each hierarchical and independent multicast working in separated zones, load of multicast source node will be distributed by several zone-level routings for a better load balance and signal interference between each multi-hop paths will be resisted for a maximum multicast throughput.

A Study on the Protocol Design and Implementation for an Underwater Acoustic Multi-channel Digital Communication (수중 초음파 디지탈 이동통신을 위한 프로토콜 설계 및 구현에 관한 연구)

  • 박연식;임재홍
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.179-189
    • /
    • 2000
  • Recently, due to the increasing interests in deep sea development, all possible efforts to the development of underwater unmanned working vehicles such as AUV(Autonomous Underwater Vehicle) or underwater robot are exerted. This paper proposes a new efficient acoustic-based underwater image data communication system, which ensures a certain level of maximum throughput regardless of the propagation delay of ultrasonic and allowsfast data transmission through the multiple ultrasonic communication channel. Proposed system consists of an acoustic transducer which operates at 136kHz center frequency and it's 10kHz bandwidth, pre-amplifier, $\pi/4 QPSK$(Quadrature Phase Shift Keying) modulation/demodu-lation method, image compressing method using JPEG technique and modified Stop & Wait protocol. The experimental result of the system make it possible to transfer the underwater image as a high throughput at the basin test. The results of test are also verified which allows to desirable transmission performance compared with the existing developed system and the possibility to put the practical use of survey and investigation in the water.

  • PDF

Performance Evaluation of the Probability based MAC Protocol for Fair Transmission in WDM Metro Ring (WDM 메트로 링에서 공정한 전송을 위한 확률기반 MAC 프로토콜에 대한 성능 평가)

  • So Won-Ho;Kim Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4B
    • /
    • pp.323-332
    • /
    • 2006
  • In this paper, we consider a WDM based metro ring connecting broadband access networks by using FT-TR (Fixed Transmitter-Tunable Receiver) type access nodes and a new MAC protocol for fair transmission is proposed. The basic channel access scheme is CSMA/CA(Carrier Sense Multiple Access with Collision Avoidance) and the transferred optical slot is changed to be empty slot by SS(Source-Stripping) which drops a packet from ring-rotated slot. This empty slot can be either used to send head-of-line packet in buffer or transmitted to next access node. In former cases, there is the improvement of network throughput, but latter case leads unfairness problem of transmission. Thus the proposed MAC protocol exploits the advantages form tow cases. It gives downstream access nodes chance to use empty slots and limits the unconditional usage of empty slots at upstream access nodes with probability as called p-Persistent MAC protocol. We use a numerical analysis to evaluate bandwidth efficiency and maximum node throughput and compares simulation results in terms of node throughput, fairness factor, transfer delay depending on probability. Under two different FT-TR type architectures for metro ring network the proposed MAC protocol is evaluated and compared.

Improving TCP Performance by Limiting Congestion Window in Fixed Bandwidth Networks (고정대역 네트워크에서 혼잡윈도우 제한에 의한 TCP 성능개선)

  • Park, Tae-Joon;Lee, Jae-Yong;Kim, Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.12
    • /
    • pp.149-158
    • /
    • 2005
  • This paper proposes a congestion avoidance algorithm which provides stable throughput and transmission rate regardless of buffer size by limiting the TCP congestion window in fixed bandwidth networks. Additive Increase, Multiplicative Decrease (AIMD) is the most commonly used congestion control algorithm. But, the AIMD-based TCP congestion control method causes unnecessary packet losses and retransmissions from the congestion window increment for available bandwidth verification when used in fixed bandwidth networks. In addition, the saw tooth variation of TCP throughput is inappropriate to be adopted for the applications that require low bandwidth variation. We present an algorithm in which congestion window can be limited under appropriate circumstances to avoid congestion losses while still addressing fairness issues. The maximum congestion window is determined from delay information to avoid queueing at the bottleneck node, hence stabilizes the throughput and the transmission rate of the connection without buffer and window control process. Simulations have performed to verify compatibility, steady state throughput, steady state packet loss count, and the variance of congestion window. The proposed algorithm can be easily adopted to the sender and is easy to deploy avoiding changes in network routers and user programs. The proposed algorithm can be applied to enhance the performance of the high-speed access network which is one of the fixed bandwidth networks.

Performance Verification of WAVE Communication Technology for Railway Application (차량용 무선통신기술(WAVE)의 철도 적용을 위한 성능검증)

  • Kim, Keum-Bee;Ryu, Sang-Hwan;Choi, Kyu-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.456-467
    • /
    • 2016
  • Wireless Access in Vehicular Environments (WAVE) communication technology, which provides vehicleto-vehicle and vehicle-to-infrastructure communication and offers safe and convenient service, has been developed for application to an Intelligent Transport System (ITS). This paper provides field test results on a study of the feasibility of WAVE technology application to railway communication systems. A test railway communication system based on WAVE technology has been built along the Daebul line and a newly developed EMU. Field tests have been carried out according to the communication function requirements for LTE - R. The test results show that the railway communication system based on WAVE technology meets the functional requirements: maximum transmission length is 730m, maximum transfer delay is 5.69ms, and maximum interruption time is 1.36s; other tests including throughput test, video data transmission test, VoIP data test, and channel switching test also produced results that meets the functional requirements. These results suggest that WAVE technology can be applied to the railway communication system, enabling Vehicle-to-Wayside communication.

Fast Congestion Control to Transmit Bursty Traffic Rapidly in Satellite Random Access Channel (위성 랜덤 액세스 채널에서 Bursty 트래픽의 신속한 전송을 위한 빠른 혼잡 제어 기법)

  • Noh, Hong-Jun;Lee, Yoon-Seong;Lim, Jae-Sung;Park, Hyung-Won;Lee, Ho-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1031-1041
    • /
    • 2014
  • In this paper, we propose a traffic load control scheme, called fast congestion control (FCC), for a satellite channel using enhanced random access schemes. The packet repetition used by enhanced random access schemes increases not only the maximum throughput but also the sensitivity to traffic load. FCC controls traffic load by using an access probability, and estimates backlogged traffic load. If the backlogged traffic load exceeds the traffic load corresponding to the maximum throughput, FCC recognizes congestion state, and processes the backlogged traffic first. The new traffic created during the congestion state accesses the channel after the end of congestion state. During the congestion state, FCC guarantees fast transmission of the backlogged traffic. Therefore, FCC is very suitable for the military traffic which has to be transmit urgently. We simulate FCC and other traffic load control schemes, and validate the superiority of FCC in latency.

IDMMAC: Interference Aware Distributed Multi-Channel MAC Protocol for WSAN

  • Kakarla, Jagadeesh;Majhi, Banshidhar;Battula, Ramesh Babu
    • Journal of Information Processing Systems
    • /
    • v.13 no.5
    • /
    • pp.1229-1242
    • /
    • 2017
  • In this paper, an interference aware distributed multi-channel MAC (IDMMAC) protocol is proposed for wireless sensor and actor networks (WSANs). The WSAN consists of a huge number of sensors and ample amount of actors. Hence, in the IDMMAC protocol a lightweight channel selection mechanism is proposed to enhance the sensor's lifetime. The IDMMAC protocol divides the beacon interval into two phases (i.e., the ad-hoc traffic indication message (ATIM) window phase and data transmission phase). When a sensor wants to transmit event information to the actor, it negotiates the maximum packet reception ratio (PRR) and the capacity channel in the ATIM window with its 1-hop sensors. The channel negotiation takes place via a control channel. To improve the packet delivery ratio of the IDMMAC protocol, each actor selects a backup cluster head (BCH) from its cluster members. The BCH is elected based on its residual energy and node degree. The BCH selection phase takes place whenever an actor wants to perform actions in the event area or it leaves the cluster to help a neighbor actor. Furthermore, an interference and throughput aware multi-channel MAC protocol is also proposed for actor-actor coordination. An actor selects a minimum interference and maximum throughput channel among the available channels to communicate with the destination actor. The performance of the proposed IDMMAC protocol is analyzed using standard network parameters, such as packet delivery ratio, end-to-end delay, and energy dissipation, in the network. The obtained simulation results indicate that the IDMMAC protocol performs well compared to the existing MAC protocols.

Maximizing Information Transmission for Energy Harvesting Sensor Networks by an Uneven Clustering Protocol and Energy Management

  • Ge, Yujia;Nan, Yurong;Chen, Yi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1419-1436
    • /
    • 2020
  • For an energy harvesting sensor network, when the network lifetime is not the only primary goal, maximizing the network performance under environmental energy harvesting becomes a more critical issue. However, clustering protocols that aim at providing maximum information throughput have not been thoroughly explored in Energy Harvesting Wireless Sensor Networks (EH-WSNs). In this paper, clustering protocols are studied for maximizing the data transmission in the whole network. Based on a long short-term memory (LSTM) energy predictor and node energy consumption and supplement models, an uneven clustering protocol is proposed where the cluster head selection and cluster size control are thoroughly designed for this purpose. Simulations and results verify that the proposed scheme can outperform some classic schemes by having more data packets received by the cluster heads (CHs) and the base station (BS) under these energy constraints. The outcomes of this paper also provide some insights for choosing clustering routing protocols in EH-WSNs, by exploiting the factors such as uneven clustering size, number of clusters, multiple CHs, multihop routing strategy, and energy supplementing period.

An amplify-and-forward relaying scheme based on network coding for Deep space communication

  • Guo, Wangmei;Zhang, Junhua;Feng, Guiguo;Zhu, Kaijian;Zhang, Jixiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.670-683
    • /
    • 2016
  • Network coding, as a new technique to improve the throughput, is studied combined with multi-relay model in this paper to address the challenges of long distance and power limit in deep space communication. First, an amplify-and-forward relaying approach based on analog network coding (AFNC) is proposed in multi-relay network to improve the capacity for deep space communication system, where multiple relays are introduced to overcome the long distance link loss. The design of amplification coefficients is mathematically formulated as the optimization problem of maximizing SNR under sum-power constraint over relays. Then for a dual-hop relay network with a single source, the optimal amplification coefficients are derived when the multiple relays introduce non-coherent noise. Through theoretic analysis and simulation, it is shown that our approach can achieve the maximum transmission rate and perform better over single link transmission for deep space communication.

Intelligent Massive Traffic Handling Scheme in 5G Bottleneck Backhaul Networks

  • Tam, Prohim;Math, Sa;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.874-890
    • /
    • 2021
  • With the widespread deployment of the fifth-generation (5G) communication networks, various real-time applications are rapidly increasing and generating massive traffic on backhaul network environments. In this scenario, network congestion will occur when the communication and computation resources exceed the maximum available capacity, which severely degrades the network performance. To alleviate this problem, this paper proposed an intelligent resource allocation (IRA) to integrate with the extant resource adjustment (ERA) approach mainly based on the convergence of support vector machine (SVM) algorithm, software-defined networking (SDN), and mobile edge computing (MEC) paradigms. The proposed scheme acquires predictable schedules to adapt the downlink (DL) transmission towards off-peak hour intervals as a predominant priority. Accordingly, the peak hour bandwidth resources for serving real-time uplink (UL) transmission enlarge its capacity for a variety of mission-critical applications. Furthermore, to advance and boost gateway computation resources, MEC servers are implemented and integrated with the proposed scheme in this study. In the conclusive simulation results, the performance evaluation analyzes and compares the proposed scheme with the conventional approach over a variety of QoS metrics including network delay, jitter, packet drop ratio, packet delivery ratio, and throughput.