• Title/Summary/Keyword: Maximum shear stress

Search Result 550, Processing Time 0.024 seconds

Compression Strength Size Effect on Carbon-PEEK Fiber Composite Failing by Kink Band Propagation

  • Kim, Jang-Ho
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.57-68
    • /
    • 2000
  • The effect of structure size on the nominal strength of unidirectional fiber-polymer composites, failing by propagation of a kink band with fiber microbuckling, is analyzed experimentally and theoretically. Tests of novel geometrically similar carbon-PEEK specimens, with notches slanted so as to lead to a pure kink band (without shear or splitting cracks), are conducted. The specimens are rectangular strips of widths 15.875, 31.75. and 63.5 mm (0.625, 1.25 and 2.5 in and gage lengths 39.7, 79.375 and 158.75 mm (1.563, 3.125 and 6.25 in.). They reveal the existence of a strong (deterministic. non-statistical) size effect. The doubly logarithmic plot of the nominal strength (load divided by size and thickness) versus the characteristic size agrees with the approximate size effect law proposed for quasibrittle failures in 1983 by Bazant This law represents a gradual transition from a horizontal asymptote, representing the case of no size effect (characteristic of plasticity or strength criteria), to an asymptote of slope -1/2 (characteristic of linear elastic fracture mechanics. LEFM) . The size effect law for notched specimens permits easy identification of the fracture energy of the kink bandand the length of the fracture process zone at the front of the band solely from the measurements of maximum loads. Optimum fits of the test results by the size effect law are obtained, and the size effect law parameters are then used to identify the material fracture characteristics, Particularly the fracture energy and the effective length of the fracture process zone. The results suggest that composite size effect must be considered in strengthening existing concrete structural members such as bridge columns and beams using a composite retrofitting technique.

  • PDF

Mode III Fracture Toughness of Single Layer Graphene Sheet Using Molecular Mechanics (분자역학을 사용한 단층 그래핀 시트의 모드 III 파괴인성)

  • Nguyen, Minh-Ky;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.121-127
    • /
    • 2014
  • An atomistic-based finite bond element model for predicting the tearing mode (mode III) fracture of a single-layer graphene sheet (SLGS) is developed. The model uses the modified Morse potential for predicting the maximum strain relationship of graphene sheets. The mode III fracture of graphene under out-of-plane shear loading is investigated with extensive molecular mechanics simulations. Molecular mechanics is used for describing the displacements of atoms in the area near a crack tip, and linear elastic fracture mechanics is used outside this area. This work shows that the molecular mechanics method can provide a reliable and yet simple method for determining not only the shear properties of SLGS but also its mode III fracture toughness in the armchair and the zigzag directions; the determined mode III fracture toughness values of SLGS are $0.86MPa{\sqrt{m}}$ and $0.93MPa{\sqrt{m}}$, respectively.

Evaluation of Input Parameters in Constitutive Models Based on Liquefaction Resistance Curve and Laboratory Tests (액상화 저항곡선과 실내실험에 기반한 구성모델 입력변수의 산정)

  • Tung, Do Van;Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.6
    • /
    • pp.35-46
    • /
    • 2020
  • The input parameters for numerical simulation of the liquefaction phenomenon need to be properly evaluated from laboratory and field tests, which are difficult to be performed in practical situations. In this study, the numerical simulation of the cyclic direct simple shear test was performed to analyze the applicability of Finn and PM4Sand models among the constitutive models for liquefaction simulation. The analysis results showed that the Finn model properly predicted the time when the excess pore water pressure reached the maximum, but failed to simulate the pore pressure response and the stress-strain behavior of post-liquefaction. On the other hand, the PM4Sand model properly simulated those behaviors of the post liquefaction. Finally, the evaluation procedure and the equations of the input parameters in the PM4Sand model were developed to mach the liquefaction cyclic resistance ratio corresponding to design conditions.

Effect of curing conditions on mode-II debonding between FRP and concrete: A prediction model

  • Jiao, Pengcheng;Soleimani, Sepehr;Xu, Quan;Cai, Lulu;Wang, Yuanhong
    • Computers and Concrete
    • /
    • v.20 no.6
    • /
    • pp.635-643
    • /
    • 2017
  • The rehabilitation and strengthening of concrete structures using Fiber-Reinforced Polymer (FRP) materials have been widely investigated. As a priority issue, however, the effect of curing conditions on the bonding behavior between FRP and concrete structures is still elusive. This study aims at developing a prediction model to accurately capture the mode-II interfacial debonding between FRP strips and concrete under different curing conditions. Single shear debonding experiments were conducted on FRP-concrete samples with respect to different curing time t and temperatures T. The J-integral formulation and constrained least square minimization are carried out to calibrate the parameters, i.e., the maximum slip $\bar{s}$ and stretch factor n. The prediction model is developed based on the cohesive model and Arrhenius relationship. The experimental data are then analyzed using the proposed model to predict the debonding between FRP and concrete, i.e., the interfacial shear stress-slip relationship. A Finite Element (FE) model is developed to validate the theoretical predictions. Satisfactory agreements are obtained. The prediction model can be used to accurately capture the bonding performance of FRP-concrete structures.

Response Analysis of Nearby Structures to Excavation-Induced Advancing Ground Movements (지반굴착 유발 진행성 지반변위에 의한 인접구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4C
    • /
    • pp.153-162
    • /
    • 2009
  • This paper investigates the effects of excavation-induced ground movements on nearby structures, considering soil-structure interactions of different soil and structural characteristics. The response of four and two-story block structures, which are subjected to excavation-induced advancing ground movements, are investigated in different soil conditions using numerical analysis. The structures for numerical analysis are modelled to have cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four and two-story block structures are investigated with advancing ground movement phases and compared with the response of structures which are subjected to excavation-induced total ground movement. The response of structures is compared among others in terms of the magnitude and shape of deformations and cracks in structures for different structure and ground conditions. The results of the comparison provide a background for better understandings for controlling and minimizing building damage on nearby structures due to excavation-induced ground movements.

Strength Prediction Model of Interior Flat-Plate Column Connections according to Design Parameters (설계변수에 따른 플랫플레이트-기둥 접합부의 강도산정모형)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.405-414
    • /
    • 2006
  • In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of design parameters such as column section shape, gravity load and slab span on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases and gravity load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. And as the slab span loaded with relatively large gravity load increases, the negative moment around the connection increases and therefore the strength of connection against unbalanced moment decreases. By considering the effect of design parameters on the strength of the connections, the effective shear strength to calculate the torsional moment capacity of connection was proposed and the effectiveness of the proposed shear strength was verified.

A Study on the Mechanical and Rheological Properties of the Recycled Polyethylene Composites with Ground Waste Tire Powder (재생 폴리에틸렌/폐타이어 분말 복합체의 기계적 특성 및 유변학적 특성에 관한 연구)

  • Kye, H.;Shin, K.;Bang, D.
    • Elastomers and Composites
    • /
    • v.41 no.2
    • /
    • pp.97-107
    • /
    • 2006
  • The recycled polyethylene composites with various ratio of ground waste tire powder were manufactured by using a fully intermeshing co-rotating twin screw extruder for the reuse of waste tire scrap. In this investigation, the ground waste tire powders (GWTP) were blended with virgin HDPE and recycled polyethylene in the weight ratio of 0 to 50 wt.%. Mechanical properties such as tensile strength, elongation at break and impact strength were measured by using ASTM standard. The experimental results for the various composite showed that the tensile strength of composites decreased with increasing GWTP ratio, while elongation at break increased with the amounts of GWTP. On the other hand, the impact strength for the three kinds of composites showed maximum at the 30 wt.% of GWTP and then decreased. Morphology of the fracture surface tends to be rough with increasing waste tire powder content. Rheological properties were investigated by measuring the shear viscosity against shear rates and softening temperatures. They showed that melt viscosity of rubber composites in this study subsequently increased with increasing GWTP content as a result of increase of flow resistance against external stress and followed a Power-law behavior.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF

Finite Element Analysis for Investigating the Behavior of Gravel Compaction Pile Composite Ground (GCP 복합지반의 거동분석을 위한 유한요소해석)

  • Kim, Gyeong-eop;Park, Kyung-Ho;Kim, Ho-Yeon;Kim, Daehyeon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.3
    • /
    • pp.19-32
    • /
    • 2018
  • Gravel Compaction Pile (GCP) method is currently being designed and constructed by empirical method because quantitative design method has not been developed, leading to various types of and frequent destruction such as expansion failure and shear failure and difficulties in establishing clear cause and developing measure to prevent destruction. In addition, despite the difference with domestic construction equipment and material characteristics, the methods applied to the overseas ground is applied to the domestic as it is, leading to remarkable difference between applied values and measured values in variables such as bearing capacity and the settlement amount. The purpose of this study was, therefore, to propose a reasonable and safe design method of GCP method by analyzing the settlement and stress behavior characteristics according to ground strength change under GCP method applied to domestic clay ground. For the purpose, settlement amount of composite ground, stress concentration ratio, and maximum horizontal displacement and expected location of GCP were analyzed using ABAQUS. The results of analysis showed that the settlement and Settlement reduction rate of composite ground decreased by more than 60% under replacement ratio of 30% or more, that the maximum horizontal displacement of GCP occurred at the depth 2.6 times pile diameter, and that the difference in horizontal displacement is slight under replacement ratio of 30%.

A Study on the Finite Element Analysis and Management Criteria by Applying UPRS Method in the Subway Station (기존 지하철정거장 비개착공법 적용시 유한요소 해석과 관리기준에 관한 연구)

  • Cho, Byeong Joon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.4
    • /
    • pp.43-52
    • /
    • 2019
  • To analyze the influence on the stability, resulting from application of upgrade pipe roof structure (UPRS) method to the structure existed under subway Station, physical properties of a ground, elasticity and elasto-plastic theories, including displacement analysis of finite elements, stress analysis of finite elements, displacement caused by steel pipe propulsion and internal excavation, and stress change in a steel pipe, were introduced. Then, the influence on structural stability when applying the UPRS method was compared and reviewed based on the construction management standard of the Ministry Land, Infrastructure and Transport and foreign sources, using numerical analysis with a model which assumes that each microelement divided into a structurally stable point consists of the connection of finite points. As a result of the finite element analysis, 7.21 mm maximum displacement, 1/3,950 angular displacement, 70.28 MPa bending compressive stress of steel pipe structure constructed with UPRS (non-excavation) method and 477.38 MPa maximum shear strength were within their allowable standards (25.00 mm, 1/500, 210.00 MPa and 120.00 MPa, respectively), and therefore, the results showed that the design and construction are stable.