• Title/Summary/Keyword: Maximum shear strain

Search Result 245, Processing Time 0.027 seconds

Recent results on the analysis of viscoelastic constitutive equations

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • Recent results obtained for the port-pom model and the constitutive equations with time-strain separability are examined. The time-strain separability in viscoelastic systems Is not a rule derived from fundamental principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The violation of separability in the short-time response just after a step strain is also well understood (Archer, 1999). In constitutive modeling, time-strain separability has been extensively employed because of its theoretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic analysis, we show that both differential and integral constitutive equations based on time-strain separability are either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamardtype instability of the Doi-Edwards model results from the time-strain separability in its formulation, and its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the port-pom equations have been derived in the integral/differential form and also in the simplifled differential type by McLeish and carson on the basis of the reptation dynamics with simplifled branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However cautious attention has to be paid when one employs the simplified version of the constitutive equations without arm withdrawal, since neglecting the arm withdrawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms.

Finite Element Analysis and Experimental Verification for the Cold-drawing of a FCC-based High Entropy Alloy (FCC계 고엔트로피 합금의 냉간 인발 유한요소해석 및 실험적 검증)

  • Cho, H.S.;Bae, S.J.;Na, Y.S.;Kim, J.H.;Lee, D.G.;Lee, K.S.
    • Transactions of Materials Processing
    • /
    • v.29 no.3
    • /
    • pp.163-171
    • /
    • 2020
  • We present a multi-step cold drawing for a non-equiatomic Co10Cr15Fe25Mn10Ni30V10 high entropy alloy (HEA) with a simple face-centered cubic (FCC) crystal structure. The distribution of strain in the cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wires was analyzed by the finite element method (FEM). The effective strain was expected to be higher as it was closer to the surface of the wire. However, the reverse shear strain acted to cause a transition in the shear strain behavior. The critical effective strain at which the shear strain transition behavior is completely shifted was predicted to be 4.75. Severely cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wires up to 96% of the maximum cross-sectional reduction ratio were successfully manufactured without breakage. With the assistance of electron back-scattering diffraction and transmission electron microscope analyses, the abundant deformation twins were found in the region of high effective strain, which is a major strengthening mechanism for the cold-drawn Co10Cr15Fe25Mn10Ni30V10 HEA wire.

Analysis of Plate Motion Parameters in Southeastern South Korea using GNSS (GNSS를 활용한 한반도 동남권 지역의 지각 변동 파라미터 분석)

  • Lee, Seung Jun;Yun, Hong Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.697-705
    • /
    • 2020
  • This paper deals with an analysis of crustal movement for the sourthern part of Korean peninsula using GNSS (Global Navigation Satellite System) data. An earthquake of more than 5.0 occurred in the southeastern region of the Korean Peninsula, and it is necessary to evaluate the risk of earthquakes in various ways.In order to reveal long-term tectonic movement patten in Pohang and Gyeongju provinces, we derived crustal movement parameters related with elastic theory. We used GAMIT/GLOBK for analyzing seven-year interval GNSS data of CORS (Continuously Operating Reference Stations). The azimuth of velocity vectors trended generally about 110° with an mean magnitude of 31mm/yr.The main characteristics of the strain change for seven-year in Korea obtaind from our study. Direction of the principal axis of the maximum compression is ENE-WSW as a whole, through there are some exceptions. The mean rate of the maximum shear strain change is (0.11±0.07)μ/yr, that is approximately one third that of Chubu district, Central Japan. Taking into account our results, the mean rate of maximum shear in southern part of Korean peninsula is considered as reasonable. The mean azimuth of principal strain is about (85.4°±26.8°). There are some exceptions of azimuth because the average azimuth differ from the left and right side in Yangsan fault which are about (73.2°±21.5°) and (105.2°±17.0°) respectively, It is noteworthy that the high seismicity areas in the southern part of Korea peninsula almost coincides with the area of large strain rate. As a conclusion, it could be stated that the our study represents the characteristics of crustal deformation in the southern part of peninsula, and contributes to the researches on earthquake disaster management.

Vibration Control of Shear Wall-Frame System using Energy Dissipation Devices (에너지 소산형 감쇠기를 이용한 철근콘크리트 전단벽-골조 시스템의 진동제어)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.578-581
    • /
    • 2007
  • In this study, the seismic control performance of energy dissipation devices installed in a shear all-frame structure is investigated through nonlinear time history analysis of a 12-story building. Inelastic shear walls are modeled using the multiple vertical line element model (MVLEM) and inelastic columns and girders were modeled using fiber beam elements. For a seismic load increased by 38% compared to the design load, the seismic control performance was analyzed based on the results of a nonlinear time history analysis in terms of the inter-story drift, the story shear and the flexural strain. Friction type dampers was found to performs best if they are installed in the form of a brace adjacent to the shear wall with the friction force of 15 % of the maximum story shear force induced in the original building structure without dampers.

  • PDF

Effect of constant loading on unsaturated soil under water infiltration conditions

  • Rasool, Ali Murtaza;Kuwano, Jiro
    • Geomechanics and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-232
    • /
    • 2020
  • In many tropical regions, soil structures often fail under constant loads as a result of decreasing matric suction due to water infiltration. Most of the previous studies have been performed by infiltrating water in the soil specimen by keeping shear stress constant at 85-90% of peak shear strength in order to ensure specimen failure during water infiltration. However, not many studies are available to simulate the soil behavior when water is infiltrated at lower shear stress and how the deformations affect the soil behavior if the failure did not occur during water infiltration. This research aimed at understanding both the strength and deformation behavior of unsaturated soil during the course of water infiltration at 25%, 50% and 75% of maximum deviatoric stress and axial strain by keeping them constant. A unique stress-strain curve expresses the transient situation from unsaturated condition to failure state due to water infiltration is also drawn. The shearing-infiltration test results indicate that the water infiltration reduces matric suction and increase soil deformation. This research also indicates that unsaturated soil failure problems should not always be treated as shear strength problems but deformation should also be considered while addressing the problems related to unsaturated soils.

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동 연구)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Hub, Hoon;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.500-507
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$(bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74GPa at strain rate $10^2s^{-1}$ and minimum strength was found to be 1.6GPa at $10^{-1}s^{-1}$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}s^{-1}$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

Tensile Deformation Behavior of Zr-based Bulk Metallic Glass Composite with Different Strain Rate (Zr 계 벌크 비정질 복합재의 변형률 속도에 따른 인장 변형 거동)

  • Kim, Kyu-Sik;Kim, Ji-Sik;Huh, Hoon;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.353-354
    • /
    • 2009
  • Tensile deformation behavior with different strain rate was investigated. $Zr_{56.2}Ti_{13.8}Nb_{5.0}Cu_{6.9}Ni_{5.6}Be_{12.5}$ (bulk metallic glass alloy possessed crystal phase which was called $\beta$-phase of dendrite shape, mean size of $20{\sim}30{\mu}m$ and occupied 25% of the total volume) was used in this study. Maximum tensile strength was obtained as 1.74Gpa at strain rate of $10^2/s$ and minimum strength was found to be 1.6GPa at $10^{-1}/s$. And then, maximum plastic deformation occurred at the strain rate of $5{\times}10^{-2}/s$ and represented 1.75%, though minimum plastic deformation showed 0%. In the specific range of strain rate, relatively higher plastic deformation and lower ultimate tensile strength were found with lots of shear bands. The fractographical observation after tensile test indicated that vein like pattern on the fracture surface was well developed especially in the above range of strain rate.

  • PDF

A Study on the Parameter Determination of Crustal Movement by Geodetic Technique (측지학적 방법에 의한 지각변동 매개변수 결정에 관한 연구)

  • 조규전;정의환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.405-414
    • /
    • 2001
  • Plate tectonics is a dominant paradigm in modern geophysics. Because of its geological mechanism, Korea has a possibility of earthquake according to plate motion. Besides the disaster of earthquake grows rapidly, the importance of recognition for earthquake has been emphasized. This study attempts to decide crustal movement parameters with GPS data, analysed baseline after processing data with GIPSY-OASIS II S/W, observed from 6 stations in and around the Korean peninsula, and obtained from selected 11 stations in Korea. As a results, maximum shear strain was $0.04{\mu}/yr$ and the mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $97.75^{\circ}$ in and around the Korean peninsula. The average rate of the maximum shear strain($({\gamma}_max)$) is $0.17{\mu}/yr$. The mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $70.25^{\circ}$ in Korea. Such a pattern of strain distribution is harmonious with that of seismic activity in Korea both historically as well as today.

  • PDF

Shear Behavior Prediction of Reinforced Concrete Columns Using Transformation Angle Truss Model (변환각 트러스 모델에 의한 철근콘크리트 기둥의 전단거동 예측)

  • Kim Sang-Woo;Chai Hyee-Dae;Lee Jung-Yoon;Lee Bum-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.435-444
    • /
    • 2005
  • This paper predicted the shear behavior of reinforced concrete columns using Transformation Angle Truss Model (TATM) considered the effects of bending moment and axial force. Nine columns with various shear span- to-depth ratios and axial force ratios were tested to verify the theoretical results obtained from TATM. Fine linear displacement transducers (LVDT) were attached to a side of the column near the shear critical region to measure the curvature, the longitudinal and transverse axial deformations, and the shear deformation of the column. The test was terminated when the value of the applied load dropped to about $85\%$ of the maximum-recorded load in the post-peak descending branch. All the columns were failed in shear before yielding of the flexural steel. The shear strength and the stiffness of the columns increased, as the axial force increased and the shear span-to-depth ratio decreased. Shear stress-shear strain and shear stress-strain of shear reinforcement curves obtained from TATM were agreed well with the test results in comparison to other truss models (MCFT, RA-STM, and FA-STM).

Dynamic Deformation Properties of Coarse Granular Materials with Respect to Gradation Characteristics (조립재료의 입도특성에 따른 동적 변형특성 평가)

  • Ha, Ik-Soo;Kim, Nam-Ryong
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.5-14
    • /
    • 2013
  • Coarse granular geomaterials containing large gravels are broadly used for construction of large geotechnical systems such as dams, levees, railways and backfills. It is necessary to evaluate deformation characteristics of these materials for dynamic analysis, e.g. seismic design. This study presents evaluation of dynamic deformation characteristics of coarse materials using large scale resonant column testing apparatus, which uses specimens with 200 mm in diameter and 400 mm in height, and the effects of gradation characteristics on maximum shear modulus, shear modulus reduction curve and damping characteristics were investigated. From experimental study using rock-fill materials for a dam, we could see that the largest or mean particle size affects the shape of shear modulus reduction curve. When the specimens are prepared under the same conditions for maximum particle size, the coefficient of uniformity affects the confining stress exponent of maximum shear modulus. It could be concluded that the maximum particle size is an factor which affects shear modulus reduction curve, and that the coefficient of uniformity is for small strain shear modulus, especially for the sensitivity to confining stress.