• 제목/요약/키워드: Maximum roughness

검색결과 399건 처리시간 0.024초

ITO 투명전극의 $O_2$ 플라즈마 처리가 고분자 유기발광다이오드의 전기.광학적 특성에 미치는 영향 (Dependence of $O_2$ Plasma Treatment of ITO Electrode on Electrical and Optical Properties of Polymer Light Emitting Diodes)

  • 공수철;백인재;유재혁;임현승;양신혁;신상배;신익섭;장지근;장호정
    • 한국표면공학회지
    • /
    • 제39권3호
    • /
    • pp.93-97
    • /
    • 2006
  • Polymer light emitting diodes (PLEDs) are expected to be commercialized as next generation displays by advantages of the fast response time, low driving voltage and easy manufacturing process for large sized flexible display. Generally, the electrical and optical properties of PLEDs are affected by the surface conditions of transparent electrode. The PLED devices with ITO/PEDOT:PSS/PVK/PFO-poss/LiF/Al structures were prepared by using the spin coating method. For this, PEDOT:PSS(poly(3,4-ethylenedioxythiophene):poly(styrene sulfolnate)) Al 4083 and PVK(N-vinylcabozole) were used as hole injection and transport layers. The PFO-poss(poly(9,9-dioctylfluorene)) was used as the emitting layer. The dependence of $O_2$ plasma treatment of ITO electrode on the electrical and optical properties of PLEDs were investigated. The sheet resistances increased slightly with an improved surface roughness of ITO electrode as the RF power increased during $O_2$ plasma treatment. The PLED devices prepared on the ITO/Glass substrates, which were plasma-treated at 40 watt in RF power for 30 seconds under 40 mtorr $O_2$ pressure, showed the maximum external emission efficiency of 0.86 lm/W and the maximum luminance of $250\;cd/m^2$, respectively. The CIE color coordinates are ranged $X\;=\;0.13{\sim}0.18$ and $Y\;=\;0.10{\sim}0.16$, showing blue color. emission.

내성천 유역의 강우-유출-토양침식-유사이송 모의를 위한 분포형 모형의 민감도 분석 및 매개변수 평가 (Sensitivity Analysis and Parameter Evaluation of a Distributed Model for Rainfall-Runoff-Soil Erosion-Sediment Transport Modeling in the Naesung Stream Watershed)

  • 정원준;지운
    • 한국수자원학회논문집
    • /
    • 제47권12호
    • /
    • pp.1121-1134
    • /
    • 2014
  • 유사발생 잠재성 및 토양침식으로 인한 유사발생 위험성이 높은 것으로 평가된 내성천유역을 대상으로 강우-유출-토양침식-유사이송으로 이어지는 유역단위의 분포형 모형을 구축하였으며 유출과 유사농도 모의 결과에 주요한 영향을 미치는 조도계수 및 투수계수의 민감도 분석을 실시하였다. 모의결과, 내성천유역의 토지 피복이 숲인 지역의 조도계수를 0.4에서 0.45로 변경하여 지표수 유출 유속을 감소시킴으로써 향석 지점에서의 유출곡선에 미치는 영향을 분석하였으나 유출수문곡선의 변화에 영향을 미치지 않는 것으로 나타났으며 평균 유사농도 값과 유사농도의 범위에 있어서도 모의 결과가 근소하게 증가하나 유의한 변화는 없는 것으로 나타났다. 투수계수에 대한 민감도 분석 결과, 투수계수 값을 저감 시킬수록 총 유출량 및 첨두 유출량은 점차 증가하는 것으로 나타났다. 유사농도 모의의 경우에도 투수계수를 저감시킬수록 모든 지점에서 평균 유사농도 및 유량에 따른 유사농도 범위가 증가하였으며, 향석 지점의 경우 투수계수를 50% 저감하였을 때 유사 농도 모의 값이 유량-유사량 관계식에 의해 계산된 값과 가장 근사한 것으로 나타났다.

Microabrasive로 처리한 상아질표면에 대한 복합레진의 결합강도에 관한 연구 (A STUDY OF THE BOND STRENGTHS OF COMPOSITE RESIN TO DENTIN SURFACES PREPARED WITH MICROABRASIVE)

  • 최경규;민병순
    • Restorative Dentistry and Endodontics
    • /
    • 제22권1호
    • /
    • pp.61-75
    • /
    • 1997
  • The bond strengths of composite resin to tooth dentin vary with the methods of cavity preparation and surface treatment. Recent developments in techniques of dentinal surface treatment have renewed interest in microabrasive as a means of tooth preparation, The purpose of this study was to determine the effects of a new method of cavity preparation on the bond of composite resin to dentin. Freshly extracted 144 healthy human third molars were used in this study. The dentin surfaces prepared with #600 SiC abrasive paper were divided into control and air abrasion groups according to the method of dentin surface preparation using different combinations of delivery pressure, time, and acid etching. The shear bond strengths were measured after the composite resin (Clearfil Photo Bright) was bonded to prepared dentin surfaces by light-curing using a dentin bonding system (All-bond 2), In addition, the average surface roughness was measured to investigate the effect of differently prepared dentin surfaces on the shear bond strengths. The surface changes of prepared dentin and the debonded dentin surfaces were observed with SEM (S-2300, Hitachi Co., Japan). The following results from this-study were obtained ; 1. There was no significant difference of shear bond strengths according to the changes of delivery pressure and time. 2. The shear bond strengths were lower than the control in the air abraded-only groups, but those of the additional acid-etched groups were higher than the control. 3. The shear bond strengths to all air-abraded surfaces were increased by acid etching. 4. The correlation between shear bond strengths and surface roughness was not certain, although the mean surface roughness of all air-abraded surfaces has increased evidently while it has slightly decreased for additional acid etching. 5. On SEM examination, the dentinal tubules were almost occluded in the air abraded-only groups, but those were opened in the additional acid-etched groups. 6. The debonded surfaces were showed adhesive failure mode in the air abraded- only groups, while those were showed mainly the mixed and cohesive failure mode in the additional acid-etched groups. These results suggest that the layer produced during cavity preparation or surface treatment with air abrasion must be removed for maximum bond strength of composite resin to dentin.

  • PDF

정사각형 단면을 갖는 180° 곡관에서 위치별 속도분포특성 및 직관거리의 유효성에 관한 연구 (A Study on Velocity Distribution Characteristics for Each Location and Effectiveness of Straight Duct Length in a Square-sectional 180° Bended Duct)

  • 진정정;윤준규
    • 한국산학기술학회논문지
    • /
    • 제17권10호
    • /
    • pp.618-627
    • /
    • 2016
  • 본 연구는 정사각형 단면 $180^{\circ}$ 곡관 내의 유동특성을 파악하기 위해 RSM 난류모델을 이용하여 작동유체, 입구의 공기속도, 관내의 표면조도, 곡률반경 및 수력직경 등의 다양한 유동인자를 변경하여 각도 위치별 속도분포특성을 수치해석을 통하여 고찰하였다. CFD 해석시 경계조건은 공기와 물의 입구온도를 288 K, 293 K로 설정하였고, 입구의 공기속도, 관내의 표면조도, 곡률반경 및 수력직경은 각각 3~15 m/s, 0~0.001 mm, 2.5~4.5D, 70~100 mm로 적용하여 해석을 수행하였다. 그 결과를 정리하면, 작동유체의 유동특성은 유체의 점성력 차이로 속도분포가 크게 달라짐을 알 수 있었고, 곡관부 내에서의 최대 속도프로파일은 $90^{\circ}$ 단면위치에서 X/D=0.8 영역으로 나타났으며, $180^{\circ}$ 단면위치에서는 Y/D=0.8 영역으로 나타났다. 그리고 관내의 표면조도가 낮고, 곡률반경이 클수록 속도변화율은 크게 변하여 나타냈다. 또한 곡관후류의 직관부에서 유동편차가 안정화되는 직관거리는 L/D=30 영역에서 나타내어 유량 계측시 유효한 측정위치로 잘 제시할 수 있었으며, 수력직경에 따라 곡관후류 직관부의 표준편차특성은 동일한 유속일 때 최소의 편차영역은 대체로 직관거리 L/D=15~30 범위로 나타났다.

열가소성 폴리머 필름의 나노 응착 및 마찰 거동에 대한 온도의 영향 (The Effect of Temperature on the Nano-scale Adhesion and Friction Behaviors of Thermoplastic Polymer Films)

  • 김광섭;안등태구;김경웅
    • Tribology and Lubricants
    • /
    • 제23권6호
    • /
    • pp.288-297
    • /
    • 2007
  • Adhesion and friction tests were carried out in order to investigate the effect of temperature on the tribological characteristics of poly (methylmethacrylate) (PMMA) film using AFM. The pull-off and friction forces on the PMMA film were measured under a high vacuum condition (below $1{\times}10^{-4}$ Pa) as the temperature of the PMMA film was increased from 300 K to 420 K (heating) and decreased to 300K (cooling). Friction tests were also conducted in both high vacuum and air conditions at room temperature. When the temperature was 420 K, which is 25 K higher than the glass transition temperature $(T_g)$ of PMMA, the PMMA film surface became deformable. Subsequently, the pull-off force was proportional to the maximum applied load during the pull-off force measurement. In contrast, when the temperature was under 395 K, the pull-off force showed no correlation to the maximum applied load. The friction force began to increase when the temperature rose above 370 K, which is 25 K lower than the $T_g$ of PMMA, and rapidly increased at 420 K. Decrease of the PMMA film stiffness and plastic deformation of the PMMA film were observed at 420 K in force-displacement curves. After the heating to 420 K, the fiction coefficient was measured under the air condition at room temperature and was found to be lower than that measured before the heating. Additionally, the RMS roughness increased as a result of the heating.

MgO 보호막의 결함 전위 레벨이 AC-PDP 방전 특성에 미치는 효과 (Effect of Defect Energy levels on the AC PDP Discharging Characteristics)

  • 권상직;김용재;조의식
    • 대한전자공학회논문지SD
    • /
    • 제44권12호
    • /
    • pp.12-17
    • /
    • 2007
  • 본 연구에서는 전자빔 증착의 증착률이 MgO 보호막의 특성과 제작된 PDP의 방전 특성에 주는 영향에 대하여 연구, 분석 하였다. MgO 박막을 여러 조건의 증착률로 증착하였고, 이 후 결정 구조, 표면 거칠기, 박막 구조와 같은 특성을 XRD, AFM 등을 사용하여 측정, 평가하였다. 실험 결과와 Paschen law을 통해서 $5\AA/sec$의 증착률에서 이차전자방출이 최대가 되는 것을 확인할 수 있었으며, 동일 조건에서 방전 전압이 가장 작고, 발광 효율은 가장 큰 값을 갖는 것이 확인되었다. 또한 $5\AA/sec$의 (200) 결정 방향과 $F^+$ center 측정값도 가장 높게 측정되었다. XRD와 CL 스펙트럼의 결과를 통하여 이차전자방출계수가 MgO 박막의 분자 결정상의 $F/F^+$ centers구조와 관련 있음을 확인할 수 있었다.

Damage on the Surface of Zinc Oxide Thin Films Etched in Cl-based Gas Chemistry

  • Woo, Jong-Chang;Ha, Tae-Kyung;Li, Chen;Kim, Seung-Han;Park, Jung-Soo;Heo, Kyung-Mu;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제12권2호
    • /
    • pp.51-55
    • /
    • 2011
  • We investigated the etching characteristics of zinc oxide (ZnO) thin films deposited by the atomic layer deposition method. The gases of the inductively coupled plasma chemistry consisted of $Cl_2$, Ar, and $O_2$. The maximum etch rate was 40.3 nm/min at a gas flow ratio of $Cl_2$/Ar=15:5 sccm, radio-frequency power of 600 W, bias power of 200 W, and process pressure of 2 Pa. We also investigated the plasma induced damage in the etched ZnO thin films using X-ray diffraction (XRD), atomic force microscopy and photoluminescence (PL). A highly oriented (100) peak was present in the XRD spectroscopy of the ZnO samples. The full width at half maximum value of the ZnO sample etched using the $O_2/Cl_2$/Ar chemistry was higher than that of the as-deposited sample. The roughness of the ZnO thin films increased from 1.91 nm to 2.45 nm after etching in the $O_2/Cl_2$/Ar plasma chemistry. Also, we obtained a strong band edge emission at 380 nm. The intensities of the peaks in the PL spectra from the samples etched in all of the chemistries were increased. However, there was no deep level emission.

플라즈마 처리에 의한 EVA Foam의 표면변화 및 접착특성에 관한 연구 (Studies on the Surface Changes and Adhesion of EVA Foam by Plasma Treatment)

  • 최명진;김동호;김구니
    • 접착 및 계면
    • /
    • 제9권1호
    • /
    • pp.9-15
    • /
    • 2008
  • 산소 플라즈마를 이용하여 처리시간을 다르게 하면서 EVA foam 표면의 개질을 시도하였다. EVA foam 표면 특성에 대한 플라즈마 처리 효과는 FT-IR ATR, XPS, 접촉각 측정기, SEM을 통해 연구하였으며 EVA foam의 접착특성은 박리접착강도를 측정하여 확인하였다. 플라즈마를 이용한 표면처리 결과, 유기화합물의 제거, 산소함유량의 증가, 표면의 물리적 변화 효과를 얻을 수 있었으며 EVA foam의 접착특성이 향상되었다. 플라즈마 처리 시간이 길어질수록 친수성과 EVA foam 표면의 물리적 변화가 증가하였고 각각 180초와 420초 처리에서 최대치를 나타내었다. 접착력은 420초 처리에서 최고를 나타내었으며 결과적으로 EVA foam표면의 물리적 변화가 접착력에 가장 큰 영향을 미치는 것으로 나타났다.

  • PDF

Surface alterations following instrumentation with a nylon or metal brush evaluated with confocal microscopy

  • Kim, Young-Sung;Park, Jun-Beom;Ko, Youngkyung
    • Journal of Periodontal and Implant Science
    • /
    • 제49권5호
    • /
    • pp.310-318
    • /
    • 2019
  • Purpose: Surface alterations of titanium discs following instrumentation with either a nylon brush or a metal brush were evaluated. Methods: A total of 27 titanium discs with 3 surface types (9 discs for each type), including machined (M) surfaces, sandblasted and acid-etched (SA) surfaces, and surfaces treated by resorbable blast media (RBM), were used. Three discs were instrumented with a nylon brush, another 3 discs were instrumented with a metal brush, and the remaining 3 discs were used as controls for each surface type. Surface properties including the arithmetic mean value of a linear profile (Ra), maximum height of a linear profile (Rz), skewness of the assessed linear profile (Rsk), arithmetic mean height of a surface (Sa), maximum height of a surface (Sz), developed interfacial area ratio (Sdr), skewness of a surface profile (Ssk), and kurtosis of a surface profile (Sku) were measured using confocal microscopy. Results: Instrumentation with the nylon brush increased the Ra, Sa, and Sdr of the M surfaces. On the SA surfaces, Ra, Sa and Sdr decreased after nylon brush use. Meanwhile, the roughness of the RBM surface was not affected by the nylon brush. The use of the metal brush also increased the Ra, Sa, and Sdr of the M surface; however, the increase in Sdr was not statistically significant (P=0.119). The decreases in the Rz, Sz, Ra, Sa, and Sdr of the SA surfaces were remarkable. On the RBM surfaces, the use of the metal brush did not cause changes in Ra and Sa, whereas Rz, Sz, and Sdr were reduced. Conclusions: Titanium surfaces were altered when instrumented either with a nylon brush or a metal brush. Hence, it is recommended that nylon or metal brushes be used with caution in order to avoid damaging the implant fixture/abutment surface.

A compensation method for the scaling effects in the simulation of a downburst-generated wind-wave field

  • Haiwei Xu;Tong Zheng;Yong Chen;Wenjuan Lou;Guohui Shen
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.261-275
    • /
    • 2024
  • Before performing an experimental study on the downburst-generated wave, it is necessary to examine the scale effects and corresponding corrections or compensations. Analysis of similarity is conducted to conclude the non-dimensional force ratios that account for the dynamic similarity in the interaction of downburst with wave between the prototype and the scale model, along with the corresponding scale factors. The fractional volume of fluid (VOF) method in association with the impinging jet model is employed to explore the characteristics of the downburst-generated wave numerically, and the validity of the proposed scaling method is verified. The study shows that the location of the maximum radial wind velocity in a downburst-wave field is a little higher than that identified in a downburst over the land, which might be attributed to the presence of the wave which changes the roughness of the underlying surface of the downburst. The impinging airflow would generate a concavity in the free surface of the water around the stagnation point of the downburst, with a diameter of about two times the jet diameter (Djet). The maximum wave height appears at the location of 1.5Djet from the stagnation point. Reynolds number has an insignificant influence on the scale effects, in accordance with the numerical investigation of the 30 scale models with the Reynolds number varying from 3.85 × 104 to 7.30 × 109. The ratio of the inertial force of air to the gravitational force of water, which is denoted by G, is found to be the most significant factor that would affect the interaction of downburst with wave. For the correction or compensation of the scale effects, fitting curves for the measures of the downburst-wave field (e.g., wind profile, significant wave height), along with the corresponding equations, are presented as a function of the parameter G.