• Title/Summary/Keyword: Maximum power point tracking

Search Result 489, Processing Time 0.027 seconds

Maximum Efficiency Point Tracking Algorithm Using Oxygen Access Ratio Control for Fuel Cell Systems

  • Jang, Min-Ho;Lee, Jae-Moon;Kim, Jong-Hoon;Park, Jong-Hu;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.11 no.2
    • /
    • pp.194-201
    • /
    • 2011
  • The air flow supplied to a fuel cell system is one of the most significant factors in determining fuel efficiency. The conventional method of controlling the air flow is to fix the oxygen supply at an estimated constant rate for optimal efficiency. However, the actual optimal point can deviated from the pre-set value due to temperature, load conditions and so on. In this paper, the maximum efficiency point tracking (MEPT) algorithm is proposed for finding the optimal air supply rate in real time to maximize the net-power generation of fuel cell systems. The fixed step MEPT algorithm has slow dynamics, thus it affects the overall efficiency. As a result, the variable step MEPT algorithm is proposed to compensate for this problem instead of a fixed one. The complete small signal model of a PEM Fuel cell system is developed to perform a stability analysis and to present a design guideline. For a design example, a 1kW PEM fuel cell system with a DSP 56F807 (Motorola Inc) was built and tested using the proposed MEPT algorithm. This control algorithm is very effective for a soft current change load like a grid connected system or a hybrid electric vehicle system with a secondary energy source.

Development of PV Module Integrated Type Low Voltage Battery Charger using Cascaded Buck-Boost Converter (Cascaded Buck-Boost 컨버터를 이용한 태양광 모듈 집적형 저전압 배터리 충전 장치 개발)

  • Kim, Dong-Hee;Lee, Hee-Seo;Lee, Young-Dal;Lee, Eun-Ju;Lee, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.471-477
    • /
    • 2012
  • In this paper, in order to use module integrated converter using cascaded buck-boost converter for a low battery charger in stand-alone system, a charging algorithm which considers photovoltaic and battery status and PWM controllers which are changed according to charging modes are proposed. The proposed algorithm consists of constant current mode, constant voltage mode and maximum power point tracking mode which enables the battery to charge with maximum power rate. This paper also presents design of cascaded buck-boost converter that is the photovoltaic charger system. A 150W prototype system is built according to verify proposed the charger system and the algorithm.

Study and Control of Photovoltaic Water Pumping System

  • Khlifi, Mohamed Arbi
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.117-124
    • /
    • 2016
  • Solar photovoltaic pumping system is one of most important of renewable energy applications especially in rural areas. Besides, the control strategy for standalone solar pumping system based on induction motor and without DC/DC converter has been widely studied and discussed in the literature. This topology is of great concern due its economic issues, especially when a standard frequency converter (SFCs) with scalar control is used instead of a dedicated PV inverter. This paper proposes an external control module to generate SFCs frequency reference in order to ensure both maximum power point tracking (MPPT). We present method of modeling and control of photovoltaic pumping system based centrifugal pump controlled by new improved incremental conductance in order to optimize the price and operation of pumping system this MPPT algorithm have many advantages like can be eliminate proportional integral controller It is a low cost solution since it requires no additional power equipment. The induction motor driven pump that is powered by a solar array is controlled by the indirect field oriented control (IFOC). The effectiveness of the proposed approach is illustrated by simulations carried out under Matlab Software. The experimental results are compared with simulation results.

Maximum Power Point Tracking of Photovoltaic using Improved Particle Swarm Optimization Algorithm (개선된 입자 무리 최적화 알고리즘 이용한 태양광 패널의 최대 전력점 추적)

  • Kim, Jae-Jung;Kim, Chang-Bok
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.291-298
    • /
    • 2020
  • This study proposed a model that can track MPP faster than the existing MPPT algorithm using the particle swarm optimization algorithm (PSO). The proposed model highly sets the acceleration constants of gbest and pbest in the PSO algorithm to quickly track the MPP point and eliminates the power instability problem. In addition, this algorithm was re-executed by detecting the change in power of the solar panel according to the rapid change in solar radiation. As a result of the experiment, MPP time was 0.03 seconds and power was 131.65 for 691.5 W/m2, and MPP was tracked at higher power and speed than the existing P&O and INC algorithms. The proposed model can be applied when a change in the amount of power is detected by partial shading in a Photovoltaic power plant with Photovoltaic connected in parallel. In order to improve the MPPT algorithm, this study needs a comparative study on optimization algorithms such as moth flame optimization (MFO) and whale optimization algorithm (WOA).

A study on maximum power Point tracker for solar array (태양전지 어레이를 위한 최대 전력점 추종기에 관한 연구)

  • Lee S. Y.;Kim H. G.;Oh B. W.;Kim H. S.;Choe G. H.
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.484-488
    • /
    • 2004
  • The output of solar array is changed non-linearly by variation of insolation and temperature. Hence, as varying insolation and temperature, Maximum Power Point Tracking(WPPT) is necessary to increase generation efficiency of solar array. This paper presented WPPT algorithm using position control of output voltage and current of solar array and implemented hardware MPP tracker which is appropriate and inexpensive for low power system$(tens\~hundreds\;watt)$. Finally, those were verified through simulation.

  • PDF

A New MPPT Algorithm based on P&O Algorithm (P&O 알고리즘을 개선한 새로운 MPPT 알고리즘)

  • Jung Y.S.;Yu G.J.;So J.H.;Choi J.Y.;Choi J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.925-928
    • /
    • 2003
  • As the maximum power operating point(MPOP) of photovoltaic(PV) power generation systems changes with changing atmospheric conditions such as solar radiation and temperature, an important consideration in the design of efficient PV system is to track the MPOP correctly. Many maximum power point tracking(MPPT) techniques have been considered in the past, however, techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This paper proposed a new MPPT algorithm based on perturb & observe(P&O) algorithm with experiment. The results shows that the new P&O algorithm has successfully tracked the MPOP, even in case of rapidly changing atmospheric conditions, and has higher efficiency than ordinary algorithms.

  • PDF

High Efficiency Lossless Snubber for Photovoltaic Maximum Power Point Tracker (태양광 최대 전력 추종기를 위한 고효율 무손실 스너버)

  • Jang, Du-Hee;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.485-491
    • /
    • 2013
  • A new passive lossless snubber for boost converter based on magnetic coupling is proposed. It is composed of a winding coupled with boost inductor, one snubber inductor, two snubber capacitor and three additional diodes. Especially, the snubber inductor can not only limit the reverse recovery current of output diode but also minimize switch turn-on losses greatly. Moreover, all of the energy stored in the snubber is transferred to the load in the manner of resonance. To confirm the validity of proposed system, theoretical analysis, design consideration, and verification of experimental results are presented.

Power Density Maximization of the Brushless DC Generator by Controlling the Optimal Current Waveform (최적 전류파형제어를 통한 브러시리스 DC 발전기의 출력밀도 최대화에 관한 연구)

  • 이형우
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.7
    • /
    • pp.430-436
    • /
    • 2004
  • This paper presents an advanced control technique for power density maximization of the Brushless DC (BLDC) generator by using the linear tracking method. In a generator of given rating, the weight and size of the system affect the fuel consumption directly. Therefore, power density is one of the most important issues in a stand-alone generator. BLDC generator has high power density in the machine point of view and additional increases of power density by control means can be expected. Conventional rectification methods cannot achieve the maximum power possible because of hon-optimal current waveforms. The optimal current waveform to maximize power density and minimize machine size and weight in a nonsinusoidal power supply system has been derived, incorporated in a control system, and verified by simulation and experimental work. A new simple algebraic method has been proposed to accomplish the proposed control without an FFT which is time consuming and complicated.

Improved Particle Swarm Optimization Algorithm for Adaptive Frequency-Tracking Control in Wireless Power Transfer Systems

  • Li, Yang;Liu, Liu;Zhang, Cheng;Yang, Qingxin;Li, Jianxiong;Zhang, Xian;Xue, Ming
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1470-1478
    • /
    • 2018
  • Recently, wireless power transfer (WPT) via coupled magnetic resonances has attracted a lot of attention owing to its long operation distance and high efficiency. However, the WPT systems is over-coupling and a frequency splitting phenomenon occurs when resonators are placed closely, which leads to a decrease in the transfer power. To solve this problem, an adaptive frequency tracking control (AFTC) was used based on a closed-loop control scheme. An improved particle swarm optimization (PSO) algorithm was proposed with the AFTC to track the maximum power point in real time. In addition, simulations were carried out. Finally, a WPT system with the AFTC was demonstrated to experimentally validate the improved PSO algorithm and its tracking performance in terms of optimal frequency.

Analysis of various MPPT algorithms for PCS (태양광 발전시스템의 MPPT 알고리즘 분석)

  • Shim, Jae-Hwe;Yang, Seung-Dae;Jung, Seung-Hwan;Choi, Ju-Yeop;Choy, Ick;An, Jin-Ung;Lee, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.2
    • /
    • pp.16-21
    • /
    • 2011
  • Since the maximum power operating point(MPOP) of PCS alters with changing atmospheric conditions temperature conditions shadow conditions it is important to operate for PCS to keep maximum power point tracking(MPPT) continuously. This paper presents the results of modeling PV system by PSIM simulator and investigates the influence on the PV system from aspect of power quality i.e. voltage drop. This paper investigates four MPPT algorithms; Perturbation & Observation(P&O) Improved P&O Incremental Conductance(Incond) Differential coefficient method simulated with irradiation temperature change and shadow conditions.