• Title/Summary/Keyword: Maximum oxygen consumption

Search Result 92, Processing Time 0.019 seconds

Changes in Circulatory and Respiratory Activities Observed on Men in an Engine Room of a Navy Ship (함정 기관실내 활동의 순환 및 호흡 기능에 대한 영향)

  • Hyun, Kwang-Chul;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.1 no.2
    • /
    • pp.199-213
    • /
    • 1967
  • Circulatory and respiratory activities were observed in men exposed to the environment of engine room of a cruising Republic of Korea Navy ship and compared to the control values obtained in an ordinary laboratory room on land. The environment of an engine room of cruising navy ship was presumed to be a multiple stress acting on men. The environment of the engine room included high temperature $(35-42^{\circ}C)$, low relative humidity (20-38% saturation), vibration (about 7 cycles per second), rolling and pitching of ship and noises. Sixteen men were divided into two groups consisted of each 8 subjects. Subjects of sea duty group had experience of continuous on board duty averaging 3.5 years. Men of land duty group had no experience of on board activity. On land observations were made on one day prior to the boarding and leaving the port and four days after landing. In between observations in the engine room were made on the first, 5 th, 9 th, 12 th, and 14 th day of on board activity. The whole experimental period lasted for 20 days. Measurements on circulatory and respiratory parameters were at standing resting state (after 30 minutes standing in the case of on land study and 15 minutes in engine room study) and within one minute after cessation of on the spot running of which rhythm was 30/min. and lasted for 5 minutes. Oxygen consumption and pulmonary function test were done in the period of two minutes from the 3rd to 5th minutes of running. The following results were obtained. 1. Body temperature showed no change regardless of group difference or on land or on board measurements. 2. Pulse rate increased markedly after boarding the ship id both groups. Pulse rate increased from the first day on board at rest and after exercise as compared to the on land control value. This increase in pulse rate was more marked after exercise. Sea duty group showed less increase in pulse rate at rest than the land duty group. Standing and resting pulse rate of sea duty group on lam was 81 and increased to 87 at the 5th day on board and remained smaller than the land duty group throughout the period on board. Control standing and resting pulse rate of land duty group on land was 76 and reached 89 at the 9th day on board and thereafter decreased a little. Pulse rate of land duty group at rest on board remained greater than that of sea duty group throughout the period on board. 3. Systolic blood pressure of sea duty group increased after boarding the ship and remained higher than the control value on land. In the land duty group, however, systolic blood pressure decreased during the period on board the ship. Diastolic blood pressure decreased in both groups. 4. Resting breathing rate of land duty group increased and remained higher than the control value on land. In sea duty group, however, resting breathing rate showed a transient increase on the 1st day on board and decreased thereafter to the control value on land and kept the same level throughout the period of cruise. Absolute value of breathing rate in the sea duty group was greater than the land duty group both at rest and after exercise. 5. There was a lowering of breathing efficiency in both groups. Thus, increases in tidal volume and minute ventilation volume and decreases in maximum breathing capacity, vital capacity, capacity ratio and air velocity Index were observed after boarding the ship. An increase in ventilation equivalent was also observed in both groups. The lowering of breathing efficiency was more marked in the land duty group than the sea duty group. 6. Energy expediture increased in both groups during their stay on the ship and was more marked in the sea duty group. 7, Lactate concentration in venous blood at rest and after exercise increased after boarding the ship and no group difference was observed.

  • PDF

Effects of Percutaneous Balloon Mitral Valvuloplasty on Static Lung Function and Exercise Performance (승모판협착증 환자에서 경피적 풍선확장판막성형술의 폐기능 및 운동부하 검사에 대한 효과)

  • Kim, Yong-Tae;Kim, Woo-Sung;Lim, Chae-Man;Chin, Jae-Yong;Koh, Youn-Suck;Kim, Jae-Joong;Park, Seong-Wook;Park, Seung-Jung;Lee, Jong-Koo;Kim, Won-Dong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 1994
  • Background: Patients with mitral stenosis(MS) have been demonstrated to have a variable degree of pulmonary dysfunction and exercise impairment. The hemodynamic changes of MS can be reversed after percutaneous mitral balloon valvuloplasty(PMV), but the extent and time course of the imporvement in pulmonary function and exercise capacity are not defined. Methods: In order to investigate the early(3 weeks or less)and late(3 months or more) effects of PMV on pulmonary function and determine if the pulmonary dysfunction is reversible even in patients with moderate to severe pulmonary hypertension, we performed the spirometry, measurements of diffusing capacity and lung volumes, and incremental exercise tests in patients with MS before and after PMV. Results: In 46 patients with MS(age: $40{\pm}12$years, male to female ratio: 1:2, mitral valve area: $0.8{\pm}0.2cm^2$) there was a significant increase in FVC(P<0.0025), $FEV_1$(P<0.001), $FEF_{25-75%}$(P<0.001, $FEF_{50%}$(P<0.001), PEF(P<0.0005), MVV(P<0.005), $\dot{V}O_2$max (P<0.0001), and AT(P<0.0001) after average 10 days of PMV. Also there was a significant decrease in DLco(P<0.0001) and DL/VA(P<0.0001). At later($5{\pm}2$months) follow-up in 11 patients, there was no further improvement in any parameters of pulmonary function and exercise test. Twenty nine patients with sinus rhythm were divided into 16 patients with pulmonary arterial pressure(PAP) more than 35mmHg and/or tricuspid regurgitation grade n or more(group A) and 13 patients with PAP less than 35mmHg(group B). Group A Patients had significantly lower FVC(P<0.001), $FEV_1$(P<0.001), DLco(P<0.05), $\dot{V}O_2$ max(P<0.025) and mitral valve area(P<0.025) than group B patients. Group A patients after PMV, showed significant increase in FVC(P<0.001), maximum $O_2$ pulse(P<0.00001) and $\dot{V}O_2$ max(P<0.00025). Both group showed an increase in AT(P<0.0001, P<0.005), but group A showed greater decrease in $\dot{V}E/\dot{V}O_2$ and $\dot{V}E/\dot{V}CO_2$ both at AT(P<0.001, P<0.001) and $\dot{V}O_2$ max(P<0.0001, P<0.0001) after PMV compared with group B. Conclusion: These data suggest that patients with MS can show increased pulmonary function and exercise performance within 1 month after PMV. Patients with moderate to severe pulmonary hypertension had a significant increase in exercise performance compared with those with mild to no pulmonary hypertension and it is thought to be related to a significat decrease of ventilation for a given oxygen consumption at maximum exercise.

  • PDF