• Title/Summary/Keyword: Maximum load

Search Result 3,957, Processing Time 0.036 seconds

A Study on the Performance Change of Insulation Sheath Due to Accelerated Degradation of IV and HIV Insulated Wire (IV 및 HIV 절연전선의 가속열화에 따른 절연피복의 성능변화에 관한 연구)

  • Choi, Su-Gil;Kim, Si-Kuk
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.114-123
    • /
    • 2019
  • The paper relates to a study on the changes in performance of insulation sheath resulting from accelerated degradation of IV and HIV insulated wire. To assume insulation degradation of IV and HIV insulated wire, accelerated life tests using Arrhenius equation were conducted among accelerated life test models, and experimental samples of 0 year, 10 years, 20 years, 30 years, and 40 years in equivalent life were produced. Whereas the maximum tensile load were increased as accelerated degradation of IV and HIV insulated wire progressed, elongation percentage, rupture time, and flexibility of insulated wires were found to be gradually reduced. According to the additional surface analysis results for the insulated wires per equivalent life using a scanning electron microscope, mechanical properties of the insulator were observed to be reduced as insulation degradation resulting from aging progressed since phenomena such as formation of crystalline structures and perforation, etc. occurred on the sample surface with progression of accelerated degradation. Consequently, institutional replacement of insulated wires and preparation of repair times considering performance degradation of the insulator installed inside buildings are considered necessary in order to prevent in advance the risks of electrical fire resulting from degradation in insulation performance.

Seismic Response Analysis of a Two-Mass Rack System Considering Frictional Behavior (마찰거동을 고려한 이중질량시스템의 지진응답해석)

  • Park, Kwan-Soon;Ok, Seung-Yong;Lee, Jeeho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.347-352
    • /
    • 2018
  • This study proposes seismic response analysis technique of a two-mass rack system which sustains heavy loads with frictional behavioral characteristics. In order to deal with the nonlinear frictional characteristics of the mass on the rack system, the equations of motion of the system has been derived and the appropriate numerical simulation technique has been developed. In order to examine the seismic performance of the proposed system, we consider two parameters that are expected to have great influence on the seismic performance of the system. One is the ratio of the two masses of the load and the rack structure, and the other is the friction coefficient between rack and loaded mass. A number of numerical simulations of the seismic response of structures with various natural frequencies for both parameters have been performed in order to investigate the seismic safety of the rack structures. From the simulated results. it is observed that the maximum displacement of the rack system tends to decrease drastically as the natural frequency of the structure increases regardless of the two parameters of mass ratio and friction coefficient. The proposed study provides important reference data to guarantee the seismic safety of the rack system by considering nonlinear frictional behavior of the loaded mass.

Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars (고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도)

  • Kim, Young-Rok;Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.111-117
    • /
    • 2019
  • Shear experiments were carried out to evaluate shear performance of SFRC deep beams with end-anchorage of SD600 high strength headed reinforcing tensile bars. The experimental variables include the end-anchorage methods of tensile bars (headed bar, straight bar), the end-anchorage lengths, and the presence of shear reinforcement. Specimens with a shear span ratio of 1 showed a pattern of the shear compression failure with the slope cracks progressed after the initial bending crack occurred. Specimens with end-anchorage of headed bars (H-specimens) showed a larger shear strengths of 5.6% to 22.4% compared to straight bars (NH-specimens). For H-specimens, bearing stress reached 0.9 to 17.2% of the total stress of tensile bars up to 75% of the maximum load, and reached 22.4% to 46%. This shows that the anchorage strength due to the bearing stress of headed bars has a significant effect on shear strength. The experimental shear strength was 2.68 to 4.65 times the theoretical shear strength by the practical method, and the practical method was evaluated as the safety side.

A Study on OBC Integrated 1.5kW LDC Converter for Electric Vehicle. (전기자동차용 OBC 일체형 1.5kW급 LDC 컨버터에 대한 연구)

  • Kim, Hyung-Sik;Jeon, Joon-Hyeok;Kim, Hee-Jun;Ahn, Joon-Seon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.4
    • /
    • pp.456-465
    • /
    • 2019
  • PHEV(Plug in Hybrid Electric Vehicle) and BEV(Battery Electric Vehicle) equip high voltage batteries to drive motor and vehicle electric system. Those vehicle require OBC(On-Board Charger) for charging batteries and LDC(Low DC/DC Converter) for converting from high voltage to low voltage. Since the charger and the converter actually separate each other in electrical vehicles, there is a margin to reduce the vehicle weight and area of installation by integration two systems. This paper studies a 1.5kW LDC converter that can be integrated into an OBC using an isolated current-fed converter by simplifying the design of LDC transformers. The proposed LDC can control the final output voltage of the LDC by using a fixed arbitrary output voltage of the bidirectional buck-boost converter, so that Compared to the existing OBC-LDC integrated system, it has the advantage of simplifying the transformer design considering the battery voltage range, converter duty ratio and OBC output turn ratio. Prototype of the proposed LDC was made to confirm normal operation at 200V ~ 400V input voltage and maximum efficiency of 91.885% was achieved at rated load condition. In addition, the OBC-LDC integrated system achieved a volume of about 6.51L and reduced the space by 15.6% compared to the existing independent system.

Determination of Optimal Section for Corrugated Steel Plates (파형강판의 최적단면 결정)

  • Na, Ho-Sung;Choi, Dong-Ho;Yoo, Hoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.5-12
    • /
    • 2011
  • In this paper, after studying structural performance for the representative corrugated steel plate used in Korea, we proposed the optimum shape for section of corrugated steel plate considering a width of steel plates that can be produced currently in the factory. Using AISI(1986) in examination for the performance of the corrugated steel plate, we determined the mechanical limit of the optimum sections considering shear force and bending moment of corrugated steel plate and also determined the geometric limit of them considering formability, shapes and ratio between width of steel plate before forming and that after forming. As a result of examination for performance of steel plate applying algorithm for searching optimal sections algorithm developed in this study to the existing representative corrugated steel plate, allowable force and moment of inertia indicated the maximum values at bending radius 76mm and internal bending angle $50^{\circ}$. And as an application result of the optimum design system that used SS490 with 1,550mm of width and 4,700mm of length considering current production situation in Korea, we developed the new section with more than 2 times of structural performance comparing with existing corrugated steel plate.

Analysis of the Correlation between the velocity speed of High-Speed Railways and the Suppressing Effect of lateral Displacement of retaining wall according to the Arrangement of Stabilizing Piles (억지말뚝의 배치에 따른 흙막이의 수평변위 억제효과와 고속철도의 속도와의 상관성 분석)

  • Son, Su-Won;Im, Jong-Chul;Seo, Min-Su;Hong, Seok-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In urban areas, structures are installed deep underground in the lower part of the structure to utilize space. Therefore, a retaining wall is used to prevent earth pressure from the ground when constructing a structure. Due to the development of construction technology, retaining wall applied to excavation work are used to prevent danger such as falling rocks and landslides in temporary facilities when construction or retaining walls are installed. In general, the application of a retaining wall to a temporary facility during the embankment construction is the case of expanding an existing roads or railways. Therefore, it is necessary to study the retaining wall applied to the embankment construction such as the double-track site of the high-speed railway. In this study, two types of common one row H-pile retaining wall and two types of IER retaining wall were analyzed, and the stability of the retaining wall applied to the construction of double-track of the high-speed railway was analyzed. The earth retaining wall is a construction method that combines forced pile applied to the stabilization of the slope with the wall of the earth retaining wall. As a result of the analysis, the IER retaining wall had maximum lateral displacement of 19.0% compared to the type with H-plie installed only in the front while dynamic load was applied. In addition, the slower the speed of high-speed railway, the more displacement occurred, and the results show that more caution is needed when designing the ground in low-speed sections.

Analysis of Control Performance in Gap Size of MR Damper (MR Damper의 Gap Size에 따른 제어성능 분석)

  • Heo, Gwang Hee;Jeon, Seung Gon;Seo, Sang Gu;Kim, Dae Hyeok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.41-50
    • /
    • 2021
  • In this study, the flow path width (Gap Size), which is the flow path of fluid, was selected differently among various factors that determine the Ccontrol Force of MR damper, and the change of Control Force was confirmed accordingly. For this purpose, two MR dampers with a Gap Size of 1.0mm and 1.5mm were fabricated, respectively, and dynamic load experiments were conducted according to changes in applied current and vibration conditions The experimental results showed that the minimum Control Force was 3.2 times higher than 1.5mm in the case of 1.0mm Gap Size, and the maximum Control Force was 2.3 times higher than 1.5mm in the case of 1.0mm Gap Size. In addition, the increased width of the Control Force according to applied current was 34N for Gap Size 1.0mm, and 12.7N for Gap Size 1.5mm. As the gap Size increased, the overall Control Force and the increase in the Control Force by the applied current decreased. Next, the dynamic range, which is a performance evaluation index of the semi-active Control device, was 2.3 on average under 1.0mm condition and 2.8 on average under 1.5mm condition, confirming the possibility of utilization as a semi-active Control device.

Parametric Study on Effect of Floating Breakwater for Offshore Photovoltaic System in Waves (해상태양광 구조물용 부유식 방파제의 파랑저감성능 평가)

  • Kim, Hyun-Sung;Kim, Byoung Wan;Lee, Kangsu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2022
  • There has been an increasing number of studies on photovoltaic energy generation system in an offshore site with the largest energy generation efficiency, as increasing the researches and developments of renewable energies for use of offshore space and resources to replace existing fossil fuels and resolve environmental challenges. For installation and operation of floating photovoltaic systems in an offshore site with harsher environmental conditions, a stiffness of structural members comprising the total system must be reinforced to inland water spaces as dams, reservoirs etc., which have relatively weak condition. However, there are various limitations for the reinforcement of structural stiffness of the system, including producible size, total mass of the system, economic efficiency, etc. Thus, in this study, a floating breakwater is considered for reducing wave loads on the system and minimizing the reinforcement of the structural members. Wave reduction performances of floating breakwaters are evaluated, considering size and distance to the system. The wave loads on the system are evaluated using the higher-order boundary element method (HOBEM), considering the multi-body effect of buoys. Stresses on structural members are assessed by coupled analyses using the finite element method (FEM), considering the wave loads and hydrodynamic characteristics. As the maximum stresses on each of the cases are reviewed and compared, the effect of floating breakwater for floating photovoltaic system is checked, and it is confirmed that the size of breakwater has a significant effect on structural responses of the system.

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

Damage-Spread Analysis of Heterogeneous Damage with Crack Degradation Model of Deck in RC Slab Bridges (RC 슬래브교의 바닥판 균열 열화모델에 따른 이종손상 확산 분석)

  • Jung, Hyun-Jin;An, Hyo-Joon;Kim, Jae-Hwan;Part, Ki-Tae;Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.93-101
    • /
    • 2022
  • RC Slab bridges in Korea account for more than 70% of the total bridges for more than 20 years of service. As the number of aging structures increases, the importance of safety diagnosis and maintenance of structures increases. For highway bridges, cracks are a main cause of deck deterioration, which is very closely related to the decrease in bridge durability and service life. In addition, the damage rate of expansion joints and bearings accounts for approximately 73% higher than that of major members. Therefore, this study defined damage scenarios combined with devices damages and deck deterioration. The stress distribution and maximum stress on the deck were then evaluated using design vehicle load and daily temperature gradient for single and combined damage scenarios. Furthermore, this study performed damage-spread analysis and predicted condition ratings according to a deck deterioration model generated from the inspection and diagnosis history data of cracks. The heterogeneous damages combined with the member damages of expansion joints and bearings increased the rate of crack area and damage spread, which accelerated the time to reach the condition rating of C. Therefore, damage to bridge members requires proper and prompt repair and replacement, and otherwise it can cause the damage to bridge deck and the spread of the damage.