• 제목/요약/키워드: Maximum flow

검색결과 3,395건 처리시간 0.028초

압력 변화를 고려한 교각 주위에서의 세굴현상 연구 (Pier Scour Prediction in Pressure Flow)

  • 안상진;최계운;김종섭;안창진
    • 물과 미래
    • /
    • 제27권2호
    • /
    • pp.111-120
    • /
    • 1994
  • 본 연구는 교각 주위에서의 최대세굴심도에 관한 실험논문으로써 실험에 사용된 교각 모형은 금강 질인 보청천내 산계교에 설치된 교각을 1/40으로 축소하여 사용하였다. 실험수로에서 사용된 하상재료는 보청천 교각 설치지점의 하상재료중 #4번체를 통과한 모래를 그대로 사용하였으며 이때의 평균 입경은 0.8mm이었다. 모형수로는 원형하천과 모형수로에서의 조도계수 실측, 모형수로 경사변화에 따른 최대세굴심도의 변화, 원형과 모형내 하상재료의 침강속도와 마찰속도의 비를 검토하여 하상경사를 결정하고 원형하천에서의 세굴심도를 직접 측정하여 모형수로 실험결과와 비교함으로써 모형수로를 검증하였다. 자유수면하에서 수심, Froude 수, 개도비, 접근각 변화에 따른 최대세굴심도를 그림으로 나타내어 손쉽게 최대세굴심도를 구할 수 있도록 하였으며, 자유수면하 및 압력흐름하에서 실험을 실시한 결과 압력흐름하에서의 최대세굴심도는 자유 수면하에서보다 2배 정도 크게 나타났다.

  • PDF

Impact of axial power distribution on thermal-hydraulic characteristics for thermionic reactor

  • Dai, Zhiwen;Wang, Chenglong;Zhang, Dalin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.3910-3917
    • /
    • 2021
  • Reactor fuel's power distribution plays a vital role in designing the new generation thermionic Space Reactor Power Systems (SRPS). In this paper, the 1/12th SPACE-R's full reactor core was numerically analyzed with two kinds of different axial power distribution, to identify their impacts on thermal-hydraulic and thermoelectric characteristics. In the benchmark study, the maximum error between numerical results and existing data or design values ranged from 0.2 to 2.2%. Four main conclusions were obtained in the numerical analysis: a) The axial power distribution has less impact on coolant temperature. b) Axial power distribution influenced the emitter temperature distribution a lot, when the core power was cosine distributed, the maximum temperature of the emitter was 194 K higher than that of the uniform power distribution. c) Comparing to the cosine axial power distribution, the uniform axial power distribution would make the maximum temperature in each component of the reactor core much lower, reducing the requirements for core fuel material. d) Voltage and current distribution were similar to the axial electrode temperature distribution, and the axial power distribution has little effect on the output power.

사행수로에서의 유속 및 분산특성에 관한 실험적 연구 (An Experimental Study of Flow and Dispersion Characteristics in Meandering Channel)

  • 박성원;서일원
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.799-802
    • /
    • 2008
  • General behaviors based on hydraulic characteristics of natural streams and channels have been recently analyzed and developed via various numerical models. However in the states of natural hydraulics, an experimental research must be performed simultaneously with the mathematical analysis due to effects of hydraulic properties such as meander, sediment, and so on. In this study based on 2-D advection-dispersion equation, flow and tracer experiments were performed in the S-curved meandering laboratory channel with a rectangular cross-section. The channel was equipped with instrument carriages which was equipped with an auto-traversing system to be used with velocity measuring sensors throughout the depth and breadth of the flow field. To measure concentration distribution of the salt solution was adjusted to that of the flume water by adding methanol and a red dye (KMnO4) was added to aid the visualization of the tracer cloud, the tracer was instantaneously injected into the flow as a full-depth vertical line source by the instantaneous injector and the initial concentration of the tracer was 100,000 mg/l. The secondary current as well as the primary flow pattern was analyzed to investigate the flow distribution in the meandering channels. The velocity distribution of the primary flow for all cases skewed toward the inner bank at the first bend, and was almost symmetric at the crossovers, and then shifted toward the inner bank again at the next alternating bend. Thus, one can clearly notice that the maximum velocity occurs taking the shortest course along the channel, irrespective of the flow conditions. The result of the tracer tests shows that pollutant clouds are spreading following the maximum velocity lines in each cases with various mixing patterns like superposition, separation, and stagnation of pollutant clouds. Flow characteristics in each cases performed in this study can be compared with tracer dispersion characteristics with using evaluation of longitudinal and transverse dispersion coefficients(LDC, TDC). As expected, LDC and TDC in meandering parts have been evaluated with increasing distribution and straight parts have effected to evaluate minimum of LDC and TDC due to symmetric flow patterns and attenuations of secondary flow.

  • PDF

원통형 다공성 유리막을 이용한 전기삼투 펌프의 연구 (Characteristics of Electroosmotic Pump with Cylindrical Porous Glass Frits)

  • 권길성;김대중
    • 대한기계학회논문집B
    • /
    • 제36권6호
    • /
    • pp.619-624
    • /
    • 2012
  • 본 논문에서는 원통형 다공성 유리막을 이용한 전기삼투 펌프의 실험적 연구를 수행하였고, 장시간 작동을 평가하였다. 전기삼투 펌프의 성능은 탈이온수와 1 mM 붕산염 완충액을 이용하여 최대유량, 최대전류, 그리고 최대압력으로 표현하였다. 최대유량, 최대전류, 그리고 최대압력은 모두 이론에서 예측하는 것과 같이 전압이 증가할 때 선형적으로 증가하였다. 최대유량을 유체의 펌핑면적과 적용 전압으로 나눈 표준화 유량을 사용하여 원통형 다공성 유리막을 이용한 전기삼투 펌프와 평면형 다공성 유리막을 이용한 전기삼투 펌프의 성능을 비교하였다. 표준화 유량은 원통형 다공성 유리막을 이용할 때 평면형 다공성 유리막보다 대략 1.5 배 높은 값을 가졌고, 이는 원통형 다공성 유리막과 평면형 다공성 유리막의 기하학적 부분의 차이에 의한 것으로 판단되었다. 표준화 유량 값을 이용하여 동일한 전기삼투 펌프 부피에서 두 다공성 막을 비교하면, 원통형 전기삼투 펌프는 평면형 전기삼투 펌프에 비해 최대 원주율만큼의 펌핑면적을 증가할 수 있으므로 5 배 높은 유량을 얻었다. 원통형 전기삼투 펌프의 내부 전극에서 전기분해에 의해 발생하는 가스들은 나피온 튜브를 통하여 효과적으로 배출되었고, 이로 인해 3 시간 이상의 작동에서 성능의 감소는 발생되지 않았다.

유량지속곡선을 이용한 수문특성별 한강수계 총량관리 단위유역의 오염기여도 추정 (Estimation of Pollution Contribution TMDL Unit Watershed in Han-River according to hydrological characteristic using Flow Duration Curve)

  • 김동영;윤춘경;이한필;최재호;황하선
    • 한국물환경학회지
    • /
    • 제35권6호
    • /
    • pp.497-509
    • /
    • 2019
  • After the Total Maximum Daily Loads(TMDLs) was applied, it became beyond the limit of concentration management. However, it does not adequately reflect the characteristics of various watersheds, and causes problems with local governments because of the standard flow set. Thus, in this study, the Han River system is organized into four groups in estimating the Pollution Contribution by applying the Flow Duration Curve(FDC) created by the daily flow of data from the HSPF. And the method of this study is expected to be valuable as basic data for the TMDLs. As a result, Group I contains the main watersheds with no large hydraulic structures and tributary watersheds. There is no specificity in the FDC and the Pollution Contribution is estimated as rainfall runoff. Group II contains watersheds near the city where the FDC is maintained above a certain level during the Low Flow Conditions and the Pollution Contribution is estimated as the discharge flow of large scale point pollution facilities. Group III contains the main watersheds in which the large hydraulic structures are installed and FDC is curved in the Low Flow Conditions. So the Pollution Contribution is estimated as the water quality of the large hydraulic structures. Group IV contains the upstream in mainstream watersheds in which the large hydraulic structures are installed and the FDC is disabled before the Low Flow Conditions. As the flow is concentrated in the High Flow Conditions, the non-point pollution sources are estimated as the Pollution Contribution.

자동차 스포일러의 형상에 따른 유동해석 (Flow Analysis due to the Configuration of Automotive Spoiler)

  • 한문식;조재웅
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.677-683
    • /
    • 2016
  • In this study, the pressures due to air resistances on the models of 1, 2, 3 and 4 as the automotive bodies grafted on various spoilers are investigated through the flow analysis. Model 1 has the flat type and model 2 has the shape that a flat plane is projected. Model 3 is attached with the slanted plate and model 4 has the shape that two slanted plates are installed on both sides. At the flow streams on the models of 1, 2, 3 and 4, the flow velocities are shown to become highest above the roofs of automotive bodies. The maximum flow velocities are also shown at the beginning points at the roofs of car bodies on the side planes of automotive bodies. The maximum pressures of 102,500 to 102,553 Pa as air resistances are shown at the bumpers of the front car bodies. The flow velocities on the inlet and middle planes become nearly same at the models of 1, 2, 3 and 4. But these velocities on the inlet plane at model 2 projected with the spoiler of flat plate become lower than the models of 1, 3 and 4. The air streams throughout the models become uniform at all models. The flow stream is shown most uniformly at model 2 projected with the spoiler of flat plate. But the flow stream is shown most irregularly at model 3 projected with the spoiler of slanting plate. By using the result of this flow analysis, it is thought to reduce the power of car effectively in driving by changing the configuration of automotive spoiler.

Laboratory investigation of the effects of translation on the near-ground tornado flow field

  • Razavi, Alireza;Sarkar, Partha P.
    • Wind and Structures
    • /
    • 제26권3호
    • /
    • pp.179-190
    • /
    • 2018
  • Translation of tornadoes is an important feature in replicating the near-ground tornado flow field which has been simulated in previous studies based on Ward-type tornado simulators using relative motion of the ground plane. In this laboratory investigation, effects of translation on the near-ground tornado flow field were studied using the ISU Tornado Simulator that can physically translate over a ground plane. Two translation speeds, 0.15 m/s and 0.50 m/s, that scale up to those corresponding to slowly-moving tornadoes in the field were selected for this study. Compared with the flow field of a stationary tornado, the simulated tornado with translation had an influence on the spatial distribution and magnitude of the horizontal velocities, early reversal of the radial inflow, and expansion of the core radius. Maximum horizontal velocities were observed to occur behind the center of the translating tornado and on the right side of its mean path. An increase in translation speed, resulted in reduction of maximum horizontal velocities at all heights. Comparison of the results with previous studies that used relative motion of the ground plane for simulating translating tornadoes, showed that translation has similar effects on the flow field at smaller radial distances (~2 core radius), but different effects at larger radial distances (~4 core radius). Further, it showed that the effect of translation on velocity profiles is noticeable at and above an elevation of ~0.6 core radius, unlike those in studies based on the relative motion of the ground plane.

스월이 있는 3차원 모델 연소기 내의 연소특성 (Prediction of Combustion Characteristics in a 3D Model Combustor with Swirling Flow)

  • 김만영
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.95-104
    • /
    • 2003
  • The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on thermal NO emission through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal characteristics and NO emission in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature and thermal NO has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate, temperature and thermal NO were shifted to forward direction compared with the case of no swirl.

수직형 흡수기 최적화에 따른 흡수 성능 예측에 관한 연구 (Study on the Prediction of Absorption Performance by the Optimization of a Vertical Absorber)

  • 김정국;조금남
    • 에너지공학
    • /
    • 제14권3호
    • /
    • pp.194-202
    • /
    • 2005
  • 본 연구는 다양한 수직 액막형 흡수기에서 열 및 물질전달 과정에 따른 흡수 특성 예측을 이론 및 실험적으로 수행하였다. 열 및 물질전달 향상은 해석적으로 조사되었으며, 흡수 성능에 대한 유동 형태, 삽입기구 및 주름에 의한 형상 변수의 영향 등을 조사하였다. 특히, 최대 흡수 성능에 대한 동적 변수(수용액 유량, 유동형태)와 흡수기 형상(ID=22.8mm, L=1150m)의 최적값을 수치 해석적으로 예측하였다 수치 해석 및 실험에서 최대 흡수 성능은 삽입기구(스프링)에 의한 파동 유동에서 나타났다.

기체연료주입계의 긴 원형도관에서 기체 흐름의 유형 (Gas flow pattern through a long round tube of a gas fueling system (I))

  • 인상렬
    • 한국진공학회지
    • /
    • 제15권5호
    • /
    • pp.465-474
    • /
    • 2006
  • 기체저장용기, 단순 개폐밸브 및 기체 공급 관으로 구성된 기체연료 주입계는 가장 간단하게 사전에 기체 도입유형을 정할 수 있다는 장점이 있다. 장치의 동작특성을 알아보기 위해 기체 흐름에 관한 일차원 동특성 방정식을 세우고 수치적으로 풀었다. 이 계산의 목적은 저장기체 압력, 저장용기 체적, 공급관의 굵기, 길이 따위의 기계적 요소들과 최대유량까지의 지연시간, 최대유량 값, 기체 펄스폭 따위의 기체 흐름의 유형을 결정하는 인자들 사이의 관계를 정립하려는 것이다.