• Title/Summary/Keyword: Maximum efficiency

Search Result 4,330, Processing Time 0.028 seconds

Method for Adjusting Single Matching Network for High-Power Transfer Efficiency of Wireless Power Transfer System

  • Seo, Dong-Wook;Lee, Jae-Ho;Lee, Hyungsoo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.962-971
    • /
    • 2016
  • A wireless power transfer (WPT) system is generally designed with the optimum source and load impedance in order to achieve the maximum power transfer efficiency (PTE) at a specific coupling coefficient. Empirically or intuitively, however, it is well known that a high PTE can be attained by adjusting either the source or load impedance. In this paper, we estimate the maximum achievable PTE of WPT systems with the given load impedance, and propose the condition of source impedance for the maximum PTE. This condition can be reciprocally applied to the load impedance of a WPT system with the given source impedance. First, we review the transducer power gain of a two-port network as the PTE of the WPT system. Next, we derive two candidate conditions, the critical coupling and the optimum conditions, from the transducer power gain. Finally, we compare the two conditions carefully, and the results therefore indicate that the optimum condition is more suitable for a highly efficient WPT system with a given load impedance.

Realization of Optimum Loads for Maximum WPT Efficiencies Using Multi-Turn Receiving Coil (수신 코일 권선 수 변화에 의한 무선전력전송 최적 부하 구현)

  • Hwang, Sungyoun;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.335-341
    • /
    • 2016
  • In this paper, we propose the method of controling the turns of a receiving coil for the matching directly to the receiver input impedance(typically $50{\Omega}$) with a maximum wireless power transfer(WPT) efficiency. Based on the presented the expression of the optimum load depending on a system figure of merit, number of the turns of a receiving coil, and proximity effect between conducting lines, the theoretical efficiencies have been compared with the measured ones with a good agreement. The results of this work may be used to realize a allowable maximum efficiency with a simple and low-profile 2-coil WPT system not requiring a separate feeding loop.

Comparing the efficiency of dispersion parameter estimators in gamma generalized linear models (감마 일반화 선형 모형에서의 산포 모수 추정량에 대한 효율성 연구)

  • Jo, Seongil;Lee, Woojoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.1
    • /
    • pp.95-102
    • /
    • 2017
  • Gamma generalized linear models have received less attention than Poisson and binomial generalized linear models. Therefore, many old-established statistical techniques are still used in gamma generalized linear models. In particular, existing literature and textbooks still use approximate estimates for the dispersion parameter. In this paper we study the efficiency of various dispersion parameter estimators in gamma generalized linear models and perform numerical simulations. Numerical studies show that the maximum likelihood estimator and Cox-Reid adjusted maximum likelihood estimator are recommended and that approximate estimates should be avoided in practice.

Fabrication and Characteristics of Ring-Dot type Piezoelectric Transformer (Ring-dot형 감압형 압전변환기의 제작과 특성)

  • Nam, Sung-Jin;Lee, Yeung-Min;Nam, Hyo-Duk;Sohn, Joon-Ho;Lee, Joon-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.722-725
    • /
    • 2004
  • Voltage step-down characteristics in Ring/Dot type piezoelectric transformer were examined as a function of the area of input electrode when the area of output electrode is fixed. The effects of driving frequency and load resistance on the voltage step-down characteristics were also examined. Voltage gain was greatly dependent on the driving frequency and load resistance, and showed a maximum gain at resonance frequency of the step-down transformer. The frequency where the maximum output voltage appears increased about 0.2% as the load resistance increased from 10 to $150\Omega$. As the area of input electrode increased, the voltage gain and the efficiency of the transformer increased. Frequency dependence of efficiency of the step-down transformer revealed a similar tendency with the voltage gain curves. The maximum efficiency remarked 94% when the input voltage and the load resistance were 20 $V_{PP}$ and $120\Omega$, respectively.

  • PDF

Method to Optimize Maximum Efficiency in MIMO WPT (MIMO WPT 시스템의 최대 효율을 위한 최적화 방법)

  • Lee, Hyeongwook;Boo, Seunghyun;Na, Sehun;Lee, Bomson
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.4
    • /
    • pp.286-289
    • /
    • 2019
  • In this paper, we proposed a method to control input powers and receiver loads for maximum efficiency in multiple-input multiple-output(MIMO) wireless power transfer(WPT) systems. The input voltage ratio between transmitters and receiver loads for maximum transfer efficiency is derived in terms of figure of merits. The theoretically derived input voltages for the transmitters and optimum loads for the receivers were found to be similar to those obtained by a genetic algorithm. We demonstrate the effectiveness of the theory using a few design examples. Using the results obtained from this study, effective and simplified designs of MIMO WPT systems will be possible.

Roles of polypropylene beads and pH in hybrid water treatment of carbon fiber membrane and PP beads with water back-flushing

  • Song, Sungwon;Park, Yungsik;Park, Jin Yong
    • Membrane and Water Treatment
    • /
    • v.10 no.2
    • /
    • pp.155-163
    • /
    • 2019
  • The roles of polypropylene (PP) beads and pH on membrane fouling and treatment efficiency were investigated in a hybrid advanced water treatment process of tubular carbon fiber membranes (ultrafiltration (UF) or microfiltration (MF)) and PP beads. The synthetic feed including humic acid and kaolin flowed inside the membrane, and the permeated contacted the PP beads fluidized in the space between the membrane and the module with UV irradiation and periodic water back-flushing. In the hybrid process of UF ($0.05{\mu}m$) and PP beads, final resistance of membrane fouling ($R_f$) after 180 min increased as PP beads increased. The turbidity treatment efficiency was the maximum at 30 g/L; however, that of dissolved organic matters (DOM) showed the highest at PP beads 50 g/L. The $R_f$ strengthened as pH of feed increased. It means that the membrane fouling could be inhibited at low alkali condition. The treatment efficiency of turbidity was almost constant independent of pH; however, that of DOM showed the maximum at pH 5. For MF ($0.1{\mu}m$), the final $R_f$ was the minimum at PP beads 40 g/L. The treatment efficiencies of turbidity and DOM were the maximum at PP beads 10 g/L.

Experimental and Simulation Study of PEMFC based on Ammonia Decomposition Gas as Fuel

  • Zhao, Jian Feng;Liang, Yi Fan;Liang, Qian Chaos;Li, Meng Jie;Hu, Jin Yi
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 2022
  • Compared with hydrogen, ammonia has the advantages of high gravimetric hydrogen densities (17.8 wt.%), ease of storage and transportation as a chemical hydrogen storage medium, while its application in small-scale on-site hydrogen production scenarios is limited by the need for complex separation equipment during high purity hydrogen production. Therefore, the study of PEMFC, which can directly utilize ammonia decomposition gas, can greatly expand the application of fuel cells. In this paper, the output characteristics, fuel efficiency and the variation trend of hydrogen concentration and local current density in the anode channel of fuel cell with the output voltage of PEMFC fueled by ammonia decomposition gas were studied by experiment and simulation. The results indicate that the maximum output power of the hybrid fuel decreases by 9.6% compared with that of the pure hydrogen fuel at the same inlet hydrogen equivalent. When the molar concentration of hydrogen in the anode channel is less than 0.12, the output characteristics of PEMFC will be seriously affected. Employing ammonia decomposition gas as fuel, the efficiency corresponding to the maximum output power of PEMFC is approximately 47%, which is 10% lower than the maximum efficiency of pure hydrogen.

Performance evaluation facilities and evaluation methods for hydropower equipment (해외 수력발전설비 성능평가설비 및 평가 방법)

  • Kim, Youngjoon;Kim, Yongyeol;Cho, Yong;Ko, Jaemyoung
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.194-194
    • /
    • 2010
  • The variable demand on the energy market, as well as the limited energy storage capabilities, requires a great flexibility in operating hydraulic turbines. But, present in Korea, the absence of testing laboratories and technical criteria for the performance test of small hydropower degrades the efficiency of the domestic hydropower machines, A performance guarantees for hydro turbines shall be contain, as a minimum, guarantees covering power, discharge and specific hydraulic energy, efficiency, maximum momentary overspeed and maximum momentary pressure and/or maximum steady-state runaway speed, as well as guarantees related to cavitation. Performance test are conducted by the test standard. Test codes based on extensive research data are written under the leadership of an IEC. Performance evaluation is carry out several test(performance test, cavitation test and runaway test). The paper presents the international turbine test laboratory and performance test standard.

  • PDF

A study on Permanent Magnet Synchronous Servo Motor Control (영구자석 동기 서보 전동기의 제어에 관한 연구)

  • Kim, J.K.;Choi, U.D.;Jung, M.K.;Lee, H.S.;Kim, M.C.
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.543-547
    • /
    • 1991
  • This paper illustrates maximum torque per ampare radio operation and efficiency operation, which are prevalently applied to the control of permanent magnet synchronous motor(PMSM). Maximum torque per ampare ratio operation minimizes the copper loss of PMSM and maximum efficiency operation minimizes the total loss of PMSM. To verify the difference of these method, simulation and experiment results applied to IPMSM(Interior type PMSM) and SPMSM(Surface mounted PMSM) are presented.

  • PDF

Experimental Study on the Aerodynamic Performance Characteristics of a Small-Size Axial Fan with the Different Depths of Bellmouth (벨마우스 깊이가 다른 소형축류홴의 공력특성에 대한 실험적 연구)

  • Kim, Jang-Kweon;Oh, Seok-Hyung
    • Journal of Power System Engineering
    • /
    • v.17 no.6
    • /
    • pp.73-78
    • /
    • 2013
  • A Small-size axial fan(SSAF) has widely been utilized to circulate a cooling air in a refrigerator, etc. Generally, the aerodynamic performance of SSAF is strongly dependent upon the depth between SSAF and bellmouth, and it includes axial, partially stalled, mostly stalled and radial flow regions according to the flow coefficient. In this study, four kinds of bellmouth depths were considered to analyze the aerodynamic performance of SSAF. As a bellmouth depth increases, a maximum flowrate decreases, but a maximum static pressure increases. Also, stall region includes an inflection point in all aerodynamic performance curves. Finally, a static pressure efficiency shows the maximum value of 37%.