• Title/Summary/Keyword: Maximum dry density

Search Result 204, Processing Time 0.028 seconds

A Study on Measuring the Coefficient of Earth Pressure at Rest II (정지토압계수 측정에 관한 연구 II)

  • SONG MU-HYO
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.58-69
    • /
    • 2004
  • In order to investigate the characteristics of the lateral earth pressure at rest, under hysteretic $K_o-loading/unloading$ conditions, seven types of multi-cyclic models have been studied, using dry sand. For this study, the new type of $K_o-oedometer$ apparatus was developed, and the horizontal pressure was accurately measured. The multi-cyclic models consist of primarily 3 cases: (i) $K_o-test$ under the same loading / unloading condition, (ii) multi-cyclic loading / unloading $K_o-test$ exceeding the maximum pre-vertical stress, and (iii) multi-cyclic loading / unloading $K_o-test$ within the maximum pre-vertical stress. Results fromthe multi-cyclic model indicated that a single-cyclic model could be extended if the exponents for the unloading condition $(\alpha\;and\;\alpha^*)$ and the reloading coefficients $(m_r,\;and\;m_r^{\ast})$ were primarily dependent upon the type of model, number of cycles, and the relative density.

Influence of Nitrogen Application Rate on Growth and Dry Matter Yield of Achyranthes japonica Nakai (질소시비량이 쇠무릎의 생육 및 건물수량에 미치는 영향)

  • Kang, Young-Kil
    • Korean Journal of Medicinal Crop Science
    • /
    • v.11 no.2
    • /
    • pp.109-114
    • /
    • 2003
  • To determine the optimum N rate m Jeju island for utricle and root production of Achyranthes japonica Nakai, a medicinal plant, the plants were grown at two plant densities $(50\;and\;100\;hills/m^2$, two plants per hill; mall plots) at six N application rates (0, 6, 12, 18, 24, and 30 kg/10a; split plots) in 2001. There was no significant interaction between plant density and N application rate for all measured agronomic characters. Main root length and roots per hill were 5 and 52% greater, respectively, but N content of stover was lower under lower plant density compared to higher plant density. The other characters were not affected by plant density. N application rate did not significantly affect mall stem diameter, spikes per hill, spike length, utricles per spike, mall root length and diameter, and utricle N content. As N rate increased from 0 to 30 kg/10a, SPAD values and stover N content increased linearly from 35.0 to 40.5 and 1.09 to 1.38%, respectively, and plant height, branches per hill, stover, utricle and root dry matter yields, roots per hill, and top N yield increased quadratically. Spikes per hill were increased in a cubic manner with increased N application rates. N application rate for the maximum dry matter yield of utricle and root in A. japonica was estimated to be 21 kg N/10a.

Analysis of Relationship Between Compressive Strength and Compaction Ratio of Roller-Compacted Concrete Pavement (포장용 롤러전압콘크리트의 다짐도와 압축강도의 상관관계 분석)

  • Chung, Gun Woo;Song, Si Hoon;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.6
    • /
    • pp.1117-1123
    • /
    • 2016
  • Roller-Compacted Concrete Pavement (RCCP) is a type of pavement that shares conventional concrete pavement material characteristics and asphalt pavement construction characteristics. Even though RCCP is compacted in the same way and have similar aggregate gradation to asphalt pavements, its materials and structural performance properties are similar to those of conventional concrete pavement. With cement hydration and aggregate interlock, Roller-Compacted Concrete or RCC can provide strength properties equal to those of conventional concrete with low cement content. Therefore, compaction ratio of RCC can highly influence on its strength. In general, 95% of compaction ratio is required for proper strength development. RCC strength can be highly influenced by compaction energy which depends on compaction equipment and compaction method. Therefore, it is necessary to analyze the relationship between compressive strength and compaction ratio of RCC. RCCP specimens were produced at different compaction ratio by using different compaction methods and energies. The compaction ratio was defined by the ratio of the specimen's dry density and its maximum dry density. The maximum dry density was obtained from Modified Proctor test. 28 days compressive strength corresponding to each compaction ratio case was tested. Finally, the relationship between compressive strength and compaction ratio can be analyzed. For application of roller-compacted concrete in domestic construction site, the relationship is important for field compaction management.

Identification of Microzooplankton Seasonality Using Time Series Analysis

  • Park, Gyung-Soo;Harold G. Marshall
    • Animal cells and systems
    • /
    • v.2 no.2
    • /
    • pp.165-176
    • /
    • 1998
  • Seasonal changes in microzooplankton abundance were identified in the mesohaline Chesapeake Bay and several tributaries from July 1992 through December 1995. Ciliates numerically dominated, comprising over 90% of the total microzooplankton density and aloricate ciliates usually outnumbered loricate ciliates. Copepod nauplii accounted for the highest microzooplankton biomass (>75% in dry weight). Rotifers made small contributions to the total microzooplankton density and biomass (<5%). Time series analysis indicated a twelve month cycle in microzooplankton abundance, and mid-summer(August) peaks for copepod nauplii, and a spring through fall peaks (May-October) for ciliates. Rotifers showed two seasonal peaks: one in mid-summer(August) at the river stations and the other in mid-winter(February) at the mesohaline stations. Seasonal peaks of copepod nauplii and rotifers coincided with the mesozooplankton abundance peak. On the other hand, ciliate maximum usually occurred between the phytoplankton and mesozooplankton peaks. This pattern of microzooplankton seasonality suggests the intermediate trophic role of microzooplankton (especially ciliates) between the phytoplankton(especially picophytoplankton) and mesozooplankton in Chesapeake Bay and its tributaries.

  • PDF

Effects of Concentration of Glucose and By-product on the Growth of Bacillus amyloliquefaciens 23350 (B. amyloliquefaciens 세포 성장에 미치는 포도당 및 부산물 농도의 영향에 관한 연구)

  • 차월석;김종균김종수
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.457-464
    • /
    • 1993
  • In this study, an attempt was made to investigate optimum cell growth and products by Bacillus amyloliquefaciens 23350 in batch culture by varing carbon soures. Maximum dry cell density increased with the increase of initial glucose concentration. Maximum dry cell density was obtained with the highest value of 5.2g/l at 30g/l of initial glucose concentration. By adding acetic acid at 20g/l of initial glucose concentration, the cell growth rate decreased with the increase of initial acetic acid concentration. Among the various carbon sources, maximum $\alpha$-amylase production was obtained with 225unit/ml at 10g/1 of initial glucose concentration. Optimum production of $\alpha$-amylase was obtained with 376unit/ml at 2g/l of initial acetic acid concentration and 20g/l of initial glucose concentration. By 10g/1 of initial glucose concentration, both good maximum specific cell growth rate and maximum $\alpha$-amylase production rate were obtained. In view of the results studied optimum production and specific production rate of $\alpha$-amylase, acetic acid was initially added 2~4g/l with 20g/1 of initial glucose concentration in batch culture.

  • PDF

Studies on the Nitrogen Economy and Primary Production of a Helianthus annuus Population (해바라기 군락의 일차생산과 질소경제)

  • 송승달
    • Journal of Plant Biology
    • /
    • v.18 no.3
    • /
    • pp.101-108
    • /
    • 1975
  • The nitrogen economy and primary production of a Helianthus annuus "Manchurian" population were studied with special reference to the pattern of seasonal changes of vertical distributions of dry matter and nitrogen quantities, and its quantitative significance was discussed in relation to the pattern of the plant population growth, distribution ratios among organs, and turnover rates of dry matter and nitrogen. The population was established in plant density of 11.1plant/$m^2$ at the experimdntal field of Kyungpook National University, Daegu. During the period of population developemnt (April-September, 1973), the annual inflow rates and outflow rates of dry matter and nitrogen were 5560 gDM/$m^2$/year and 89 gN/$m^2$/year, respectively. The distribution ratios of dry matter and nitrogen to leaves were 28% and 45%, to stems 48% and 18%, to roots 13% and 5%, and to flowers and seeds 11% and 32%, respectively. The maximum turnover rates of inflow of dry matter and nitrogen were attained in May-June, and were 216%/month and 210%/month, respectively. The amount of nitrogen demand was 52gN/$m^2$/year (58%) for the foliage growth, 13 gN/$m^2$/year(15%) for the stem growth, 20 gN/$m^2$/year(23%) for the reproductive organs, and 4 gN/$m^2$/year(4%) for the growth of the underground parts. The amount of nitrogen supply by the nitrogen withdrawn from senescing leaves and stems was 25gN/$m^2$/year(28%) and the amount of nitrogen absorption by the root from the environmental soil was 64 gN/$m^2$/year(72%). The ratiio of the a mount of produced dry matter to that of assimilated nitrogen during a year was calculated for this annual plant population as 60, which can be used as the nitrogen utility index.ity index.

  • PDF

Strength properties of lime-clay mixtures (석회 혼입 점토의 강도 특성)

  • Yur, Jae Ho;Kwon, Moo Nam;Goo, Jung Min;Kim, Hyun Ki
    • Current Research on Agriculture and Life Sciences
    • /
    • v.18
    • /
    • pp.61-69
    • /
    • 2000
  • This study was conducted to investigate most effective the optimum lime content for lime-clay modification. To achieve the aim, characteristics of compaction and compressive strength were tested by adding of 0, 5, 10, 15 and 20% lime (Hydrated lime) of dry weight of the clay. Distilled water was added 10, 15, 20 and 25% of dry weight of lime-clay mixture. In this test, the compressive strength of the specimens was measured according to the following curing period : 7, 21, 28, 35 and 49 days. The results are as follows. (1) As lime additive increased, the optimum moisture content of lime-clay mixture was increased and the maximum dry density was decreased. (2) The soil mixture of 20% of the moisture content and 10% of lime additive was shown the maximum compressive strength. (3) As curing period longer, the compressive strength was increased but after 21 curing days, the increasing rate of compressive strength was low as compared with earlier its value. (4) In the range of 20% of the moisture content, compressive strength of mixture of 10% lime additive increased twice compared with that of mixture of 0% lime additive. (5) All of the lime-clay are possible to use for an sub-base material and 20% of moisture content of lime-clay mixture is possible to use for a base material.

  • PDF

A Study on the Effects of Bituminous Material on Durability of Soil-Cement Mixtures (염청재료가 흙-시멘트의 강도 및 내구성에 끼치는 영향에 관한 연구)

  • 김종옥;정하우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4599-4613
    • /
    • 1978
  • This study was intended to investigate the effects of bituminous material content of soil-cement mixtures on their durability. For the purpose, unconfined compressive strength test, Freeze-thaw test, and wet-dry test were performed with three types of soil. Each type of soil was mixed with three levels of cement content and each soil-cement mixture was mixed with four levels of bituminous material content. For the unconfined compressive strength test, Freeze-thaw test and wet-dry test, 324, 108, and 108-specimens were prepared respectively. Unconfined compressive strength was measured at age of 7-days, 14-days and 28-days using 108-specimens in each age. The soil-cement loss rate due to freeze-thaw and wet-dry were calculated after 12 cycles of test using 108-specimens in each test. The results are summarized as follows : 1. Optimum moisture content was increased with increase of cement content, but maximum dry density was changed irregulary with increase of the cement content. 2. The unconfined compressive strength was increased with increase of cement content, bituminous material content and curing age. Cement is more effective factor than bituminous material on unconfined compressive strength of soil-cement Mixture. 3. It is estimated as the most economical cement content that the recommended cement content of A.S.T.M. because increasing rate of unconfined compressive strength at age of 28-days was low when cement content is above the recommanded cement content of A.S.T.M. among all types of soil. 4. Although a portion of cement content is substituted for bituminous material, the necessary unconfined compressive strength can be obtained. 5. The soil-cement loss was more influenced by wet-dry than Freeze-thaw 6. The bituminous material is more effective on the decrease of soil-cement loss than increase of unconfined compressive strength 7. The void ratio of soil-cement mixture was changet irregularly with increase of cement content, but that was decreased in proportion to the increase of bituminous material content. 8. The regression equation between the unconfined compressive strength and soil-cement loss rate were obtained as table 7.

  • PDF

Studies on the Cultuer of Cool-Season Grasses in Forest (목초의 임간재배에 관한 연구)

  • 이종열
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.5 no.1
    • /
    • pp.33-36
    • /
    • 1985
  • This experiment was carried out to investigate the effect of crown density of trees on the growth and yield of cool-season grasses in forest. The species used in this study was orchard-grass (Dactylis glomerata L.) and 4 levels of tree crown density(O=full sunlight, 25, 50 and 75%) were treated. The experiment was performed at the experimental filed of the Livestock Experiment Station in Suweon, during 1979 to 1950. The results obtained are summarized as follows: 1. Maximum leaf area was obtained at 25% crown density of trees, followed by 0, 50 and 75%, regardless of cutting times. 2. Plant height tended to increase as the crown density of trees increased. However, there was no difference between 0% and 25% crown density of trees. 3. There was a negative correlation between plant height and leaf area of orchardgrass grown under pine trees. 4. The more dry matter yield of orchardgrass was obtained at 25% crown density of trees (p<0.05), follwed by 0, 50 and 75%, respectively. However, there was no significant difference between 0% and 50% crown density of trees. Therefore it is suggested that the critical level of crown density of trees is 50% to culture of cool-season grasses in forest.

  • PDF

A study of compaction ratio and permeability of soil with different water content (축제용흙의 함수비 변화에 의한 다짐율 및 수용계수 변화에 관한 연구)

  • 윤충섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2456-2470
    • /
    • 1971
  • Compaction of soil is very important for construction of soil structures such as highway fills, embankment of reservoir and seadike. With increasing compaction effort, the strength of soil, interor friction and Cohesion increas greatly while the reduction of permerbilityis evident. Factors which may influence compaction effort are moisture content, grain size, grain distribution and other physical properties as well as the variable method of compaction. The moisture content among these parameter is the most important thing. For making the maximum density to a given soil, the comparable optimum water content is required. If there is a slight change in water content when compared with optimum water content, the compaction ratio will decrease and the corresponding mechanical properties will change evidently. The results in this study of soil compaction with different water content are summarized as follows. 1) The maximum dry density increased and corresponding optimum moisture content decreased with increasing of coarse grain size and the compaction curve is steeper than increasing of fine grain size. 2) The maximum dry density is decreased with increasing of the optimum water content and a relationship both parameter becomes rdam-max=2.232-0.02785 $W_0$ But this relstionship will be change to $r_d=ae^{-bw}$ when comparable water content changes. 3) In case of most soils, a dry condition is better than wet condition to give a compactive effort, but the latter condition is only preferable when the liquid limit of soil exceeds 50 percent. 4) The compaction ratio of cohesive soil is greeter than cohesionless soil even the amount of coarse grain sizes are same. 5) The relationship between the maximum dry density and porosity is as rdmax=2,186-0.872e, but it changes to $r_d=ae^{be}$ when water content vary from optimum water content. 6) The void ratio is increased with increasing of optimum water content as n=15.85+1.075 w, but therelation becames $n=ae^{bw}$ if there is a variation in water content. 7) The increament of permeabilty is high when the soil is a high plasticity or coarse. 8) The coefficient of permeability of soil compacted in wet condition is lower than the soil compacted in dry condition. 9) Cohesive soil has higher permeability than cohesionless soil even the amount of coarse particles are same. 10) In generall, the soil which has high optimum water content has lower coefficient of permeability than low optimum water content. 11) The coefficient of permeability has a certain relations with density, gradation and void ratio and it increase with increasing of saturation degree.

  • PDF