• Title/Summary/Keyword: Maximum deflection

Search Result 499, Processing Time 0.024 seconds

Evaluation on the Effect of Depth Buried Pipeline and Refilling Materials on Pavement Performance (도로하부 매설관의 매설심도 및 되메우기 재료가 포장체에 미치는 영향 평가)

  • Baek, Cheolmin;Kim, Yeong Min;Kwon, Soo-Ahn;Hwang, Sung Do;Kim, Jin Man
    • International Journal of Highway Engineering
    • /
    • v.15 no.2
    • /
    • pp.105-112
    • /
    • 2013
  • PURPOSES : Compared to the criteria from advanced countries, Korea has conservative criteria for the buried depth of pipeline (about 30~70cm deeper) causing the waste of cost and time. Therefore, this research investigated the effect of various buried depths of pipeline on pavement performance in order to modify the criteria to be safe but economical. In addition, a recycled aggregate which is effective in economical and environmental aspect was evaluated to be used as a refilling material. METHODS : In this study, total 10 pilot sections which are composed with various combinations of pavement structure, buried depth of pipeline, and refilling material were constructed and the telecom cable was utilized as a buried pipeline. During construction, LFWD (Light Falling Weight Deflectometer) tests were conducted on each layer to measure the structural capacity of underlying layers. After the construction is completed, FWD (Falling Weight Deflectometer) tests and moving load tests were performed on top of the asphalt pavement surface. RESULTS : It was found from the LFWD and FWD test results that as the buried depth decrease, the deflections in subbase and surface layer were increased by 30% and 5~10%, respectively, but the deflection in base layer remained the same. In the moving load test, the longitudinal maximum strain was increased by 30% for 120mm of buried depth case and 5% for 100mm of buried depth case. Regarding the effect of refilling material, it was observed that the deflections in subbase and surface layer were 10% lager in recycled aggregate compared to the sand material. CONCLUSIONS : Based on the testing results, it was found that the change in buried depth and refiliing material would not significantly affect the pavement performance. However, it is noted that the final conclusion should be made based on an intensive structural analysis for the pavement under realistic conditions (i.e., repeated loading and environmental loading) along with the field test results.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Effect of Pull-out Property by Shape and Mechanical Property of Reinforcing Fiber on the Flexural Behavior of Concrete (보강섬유의 형상과 물성에 따른 인발특성이 콘크리트의 휨거동에 미치는 영향)

  • Kim, Hong-Seop;Nam, Jeong-Soo;Kim, Jung-Hyun;Han, Sang-Hyu;Kim, Gyu-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.41-50
    • /
    • 2014
  • This study evaluated the bonding property of fiber and flexural behavior of fiber reinforced concrete. Amorphous steel fiber, hooked steel fiber and polyamide fiber was used for evaluation of bonding property and flexural behavior. As a result, the hooked steel fiber was pulled out from matrix when peak stress. However amorphous steel fiber occurred shear failure because bonding strength between fiber and matrix was higher than tensile strength of fiber. Polyamide fibers occurred significantly displacement to peak stress because of elongation of fiber. After that peak stress, fiber was cut off. Amorphous steel fiber reinforced concrete had a greater maximum flexural load compared with hooked steel fiber reinforced concrete because bonding performance between fiber and matrix was high and mixed population of fiber was many. However flexural stress was rapidly reduced in load-deflection curve because of shear failure of fiber. Flexural stress of hooked steel fiber reinforced concrete was slowly reduced because fiber was pulled out from the matrix. In the case of polyamide fiber reinforced concrete, flexural stress was rapidly lowered because of elongation of fiber. However flexural stress was increased again because of bonding property between polyamide fiber and matrix. The pull-out properties of the fiber and matrix has effect on the deformation capacity and flexural strength of fiber reinforced concrete.

The Study of Magnetic Properties of Ni-Zn-Cu Ferrite by variation of Low Temperature Sintered (저온소결 온도변화에 따른 Ni-Zn-Cu 페라이트의 자기적 특성 연구)

  • Koh, Jae-Gui
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.6
    • /
    • pp.232-237
    • /
    • 2007
  • We have synthesized the low temperature sintered of Ni-Zn-Cu ferrite with nonstoichiometric composition a little deficient in $Fe_2O_3$ from $(Ni_{0.2}Cu_{0.2}Zn_{0.6})_{1+x}(Fe_2O_3)_{1-x}$. For low loss and acceleration of grain growth $TiO_2$ and $Li_2CO_3$ was added from 0.25 mol% to 1.0 mol%. The mixture of the law materials was calcinated and milled. The compacts of toroidal type were sintered at different temperature $(875^{\circ}C,\;900^{\circ}C,\;925^{\circ}C\;950^{\circ}C)$ for 2 hours in air followed by an air cooling. Then, effects of composition and sintering temperatures on the physical properties such as density, resistivity, magnetic induction, coercive force, initial permeability, and quality factor of the Ni-Zn-Cu ferrite were investigated. The density of the Ni-Zn-Cu ferrite was $4.85\sim5.32g/cm^3$, resistivity revealed $10^8\sim10^{12}\Omega-cm$. The magnetic properties obtained from the aforementioned Ni-Zn-Cu ferrite specimens were 1,300 gauss for the maximum induction, 4.5 oersted for the coercive force, 275 for the initial permeability, and 83 for the quality factor. The physical properties indicated that the specimens could be utilized as the core of high frequency range (involved microwave range) communication and deflection yoke of T.V.

Prediction of Transmission Error Using Dynamic Analysis of a Helical Gear (헬리컬기어의 동적해석을 통한 전달오차 예측)

  • Lee, Jeongseok;Yoon, Moonyoung;Boo, Kwangsuk;Kim, Heungseob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.12
    • /
    • pp.1005-1011
    • /
    • 2016
  • The fundamental reason for gear noise is transmission error. Transmission error occurs because of STE (static transmission error) and DTE (dynamic transmission error), while a pair of gears is meshing. These errors are generated by the deflection of the teeth and the friction on the surface of the teeth. In addition, the vibration generated by transmission error leads to excited bearings. The bearings support the shafts, and the noise is radiated after exciting the gear casing. The analysis of the contact stress in helical gear tooth flanks indicates that it is due to impact loading, such as the sudden engagement and disengagement of a gear. Stress analysis is performed for different roll positions, in order to determine the most critical roll angle. Dynamic analysis is performed on this critical roll position, in order to evaluate variation in stresses and tooth contact force, with respect to time. In this study, transmission error analysis was implemented on a spur and helical gear with involute geometry and a modified geometry profile. In addition, in order to evaluate the intensity of impact due to sudden engagement and significant backlash, the impact factor was calculated using the finite element analysis results of static and dynamic maximum bending stresses.

Microstructure Related to the Growth of Rare-earth Mineral in the Eoraesan Area, Chungju, Korea (충주 어래산 지역에서 희토류 광물의 성장과 관련된 미구조)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.129-141
    • /
    • 2019
  • The Eoraesan area, Chungju, which is located in the northwestern part of Ogcheon Metamorphic Zone, Korea, mainly consists of the Neoproterozoic Gyemyeongsan Formation and the Mesozoic igneous rocks which intruded it. The metaacidic rocks (MAR) of the Gyemyeongsan Formation show a maximum radioactive value, and the Early Jurassic biotite granite is regionally distributed in this area. In this paper is researched the microstructure related to the growth of rare-earth mineral of allanite in the MAR, and is considered the source and occurrence time of rare-earth element (REE) mineralization. The MAR is mainly composed of alkalic feldspar (mainly microcline), quartz, iron-oxidizing mineral, biotite, muscovite, plagioclase, hornblende, allanite, zircon, epidote, fluorite, apatite, garnet, (clino)zoisite etc. The radioactive elements contained in the allanite cause a dark brown hale in the surrounding biotite, and the allinte also occurs as aggregate along the regional foliation. The deflection of regional foliation and the strain shadows, which are common to the pre-tectonic porphyroblast grown before the formation of regional foliation, can't be observed around most allanites (aggregates). The grain size and orientation of ironoxidizing mineral included in the allanite aggregate are the same as those in the matrix. It is recognized the hydrothermal conversion of hornblende to biotite due to the intrusion of igneous rock, and the secondary biotite occurs and contacts with allanite, zircon, epidote etc. These microstructures indicate that the rare-earth mineral of allanite (aggregate) grew by the hydrothermal alteration due to the intrusion of igneous rock after the formation of regional foliation. It is considered that the REE mineralization is closely related to the intrusion of Early Jurassic biotite granite which is regionally distributed in this area.

FEA for RC Beams Partially Flexural Reinforced with CFRP Sheets (CFRP 시트로 부분 휨 보강된 철근콘크리트 보의 유한요소해석)

  • Kim, Kun-Soo;Park, Ki-Tae;Kim, Byeong Cheol;Kim, Jaehwan;Jung, Kyu-San
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.9-16
    • /
    • 2020
  • A CFRP sheet has been applied as a structural reinforcement in the field, and various studies are conducted to evaluate the effect of CFRP sheets on reinforced concrete. Although many experiments were performed from previous studies, there are still limitations to analyze structural behaviors with various parameters in experiments directly. This study shows the FEA on structural behaviors of RC beams reinforced with CFRP sheets using ABAQUS software. To simulate debonding failure of CFRP sheets which is a major failure mode of RC beam with CFRP sheets, a cohesive element was applied between the bottom surface of RC beam and CFRP sheets. Both quasi-static method and 2-D symmetric FE model technique were performed to solve nonlinear problems. Results obtained from the FE models show good agreements with experimental results. It was found that reinforcement level of CFRP sheets is closely related to structural behavior of reinforced concrete including maximum strength, initial stiffness and deflection at failure. Also, as over-reinforcement of CFRP sheets could give rise to the brittle failure of RCstructure using CFRP sheets, an appropriate measure should be required when installing CFRP sheets in the structure.

Use of waste steel fibers from CNC scraps in shear-deficient reinforced concrete beams

  • Ilker Kalkan;Yasin Onuralp Ozkilic;Ceyhun Aksoylu;Md Azree Othuman Mydin;Carlos Humberto Martins;Ibrahim Y. Hakeem;Ercan Isik;Musa Hakan Arslan
    • Steel and Composite Structures
    • /
    • v.49 no.2
    • /
    • pp.245-255
    • /
    • 2023
  • The present paper summarizes the results of an experimental program on the influence of using waste lathe scraps in the concrete mixture on the shear behavior of RC beams with different amounts of shear reinforcement. Three different volumetric ratios (1, 2 and %3) for the scraps and three different stirrup spacings (160, 200 and 270 mm) were adopted in the tests. The shear span-to-depth ratios of the beams were 2.67 and the stirrup spacing exceeded the maximum spacing limit in the building codes to unfold the contribution of lathe scraps to the shear resistances of shear-deficient beams, subject to shear-dominated failure (shear-tension). The experiments depicted that the lathe scraps have a pronounced contribution to the shear strength and load-deflection behavior of RC beams with widely-spaced stirrups. Namely, with the addition of 1%, 2% and 3% waste lathe scraps, the load-bearing capacity escalated by 9.1%, 21.8% and 32.8%, respectively, compared to the reference beam. On the other hand, the contribution of the lathe scraps to the load capacity decreases with decreasing stirrup spacing, since the closely-spaced stirrups bear the shear stresses and render the contribution of the scraps to shear resistance insignificant. The load capacity, deformation ductility index (DDI) and modulus of toughness (MOT) values of the beams were shown to increase with the volumetric fraction of scraps if the stirrups are spaced at about two times the beam depth. For the specimens with a stirrup spacing of about the beam depth, the scraps were found to have no considerable contribution to the load capacity and the deformation capacity beyond the ultimate load. In other words, for lathe scrap contents of 1-3%, the DDI values increased by 5-23% and the MOT values by 63.5-165% with respect to the reference beam with a stirrup spacing of 270 mm. The influence of the lathe scraps to the DDI and MOT values were rather limited and even sometimes negative for the stirrup spacing values of 160 and 200 mm.

Experimental Performance Evaluation of Steel Mesh as Maintenance and Reinforcement Materials (Steel Mesh Cement Mortar의 보수⋅보강 성능 평가)

  • Kim, Yeon-Sang;Choi, Seung-Jai;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.50-58
    • /
    • 2014
  • Due to the cost burden of new construction, the necessity of repair and retrofitting of aged structures is sharply increasing as the domain of repair and retrofitting construction is expanding. Because of the necessity, new technologies for repair and retrofitting are continuously studied in Korea and foreign countries. Steel adhesive method, fiber reinforced plastic (FRP) surface adhesive method, and external prestressing method are used to perform the repair and retrofitting works in Korea. In order to consider a repair method using steel mesh reinforced cement mortar (SMCM), 3-point flexural member test was conducted considering repair area and layer number of SMCM. Five types of specimens including ordinary reinforced concrete (RC) specimen with dimensions of $1400{\times}500{\times}200$ (mm) were cast for testing the deflection measurement, a LVDT was installed at the top center of the specimens. Also, a steel strain gauge and a concrete strain gauge were placed at the center of the specimens. A steel strain gauge was also installed on the shear reinforcement. The 3 point flexural member test results showed that the maximum load of SMCM reinforced specimen was higher than that of basic RC specimen in all of the load-displacement curves. Also, the results showed that, when the whole lower part of the basic RC specimen was reinforced, the maximum load and strain were 1.18 and 1.37 times higher than that of the basic RC specimen, respectively. Each specimen showed a slightly different failure behavior where the difference of the results was caused by the difference in the adhesive level between SMCM and RC. Particularly, in SM-B1 specimen, SMCM spalled off during the experiment. This failure behavior showed that the adhesive performance for RC must be improved in order to utilize SMCM as repair and retrofitting material.