• Title/Summary/Keyword: Maximum damage

Search Result 1,322, Processing Time 0.022 seconds

Study on the Behavior and Damage of Pedestrian at Car Body Impact (차체 충돌에 있어서의 보행자의 거동 및 손상에 관한 연구)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.157-161
    • /
    • 2011
  • The study for traffic safety improvement is so necessary to minimize the wound of pedestrian at car impact as to prevent pedestrian from this accident. This study aims at analyzing the behavior affected by impact on which car body hits pedestrian. Load and damage of pedestrian are also investigated. This model is the small car body as frame structure. The pedestrian is modeled with dummy by CATIA as Korean standard body style. The ear impacts the side of pedestrian with the speed from 30 to 90km/h. Behavior and damage of pedestrian at impact are analyzed by ANSYS. In case of 30km/h, The maximum pressure of dummy becomes the maximum value of 100MPa after the elapsed time of 0.1second and then seems to remain at 105MPa constantly. In case of 60km/h, its pressure becomes the maximum value of 110MPa at the elapsed time of 0.05second and decreases at 90MPa until the elapsed time of 0.1second. This value fluctuates after the elapsed time of 0.1second. In case of 90km/h, its maximum pressure becomes the maximum value of 155MPa at the elapsed time of 0.07second and fluctuates after the elapsed time of 0.07second until O.3second. This value seems to remain at 100MPa constantly after 0.3second until 0.5second. But this pressure increases suddenly just after 0.5second. Maximum deformations of dummy increase linearly according to elapsed time at hitting velocities of 30, 60 and 90km/h.

Durability Study on Two-passenger Bicycle Frame under Non-uniform Fatigue Load (불규칙 피로하중을 받는 2인승용 자전거의 차대에 관한 내구성 연구)

  • Han, Moonsik;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.92-98
    • /
    • 2015
  • This study investigates the durability of a two-passenger bicycle frame under non-uniform fatigue load. The bicycle frame of Model 1 installed with reinforcement support has a 20% lower maximum equivalent stress than the existing Model 2. Model 1 has a maximum total deformation that is less than half that of Model 2. Model 1 has a higher maximum fatigue life than Model 2. In addition, Model 1 has lower fatigue damage than Model 2. Thus, the bicycle frame of Model 1 installed with reinforcement support can be described as safer, as it offers more strength than Model 2. Applying this result to the design of a real two-passenger bicycle frame under non-uniform fatigue load can effectively prevent fatigue damage and improve durability.

Damage detection in beam-like structures using deflections obtained by modal flexibility matrices

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.605-628
    • /
    • 2008
  • In bridge structures, damage may induce an additional deflection which may naturally contain essential information about the damage. However, inverse mapping from the damage-induced deflection to the actual damage location and severity is generally complex, particularly for statically indeterminate systems. In this paper, a new load concept, called the positive-bending-inspection-load (PBIL) is proposed to construct a simple inverse mapping from the damage-induced deflection to the actual damage location. A PBIL for an inspection region is defined as a load or a system of loads which guarantees the bending moment to be positive in the inspection region. From the theoretical investigations, it was proven that the damage-induced chord-wise deflection (DI-CD) has the maximum value with the abrupt change in its slope at the damage location under a PBIL. Hence, a novel damage localization method is proposed based on the DI-CD under a PBIL. The procedure may be summarized as: (1) identification of the modal flexibility matrices from acceleration measurements, (2) design for a PBIL for an inspection region of interest in a structure, (3) calculation of the chord-wise deflections for the PBIL using the modal flexibility matrices, and (4) damage localization by finding the location with the maximum DI-CD with the abrupt change in its slope within the inspection region. Procedures from (2)-(4) can be repeated for several inspection regions to cover the whole structure complementarily. Numerical verification studies were carried out on a simply supported beam and a three-span continuous beam model. Experimental verification study was also carried out on a two-span continuous beam structure with a steel box-girder. It was found that the proposed method can identify the damage existence and damage location for small damage cases with narrow cuts at the bottom flange.

Strength and Fatigue Analysis of Universal Joint (유니버설조인트의 강도 및 피로 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.427-433
    • /
    • 2011
  • Chassis part in automotive body is affected by fatigue load at driving on the ground. Universal joint on this part is influenced extremely by the fatigue load. Fatigue life, damage and natural frequency are analyzed at universal joint under nonuniform fatigue load. The york part at universal joint is shown with the maximum equivalent stress and displacement of 60.755 MPa and 0.21086 mm as strength analysis. The possible life in use in case of 'SAE bracket' is the shortest among the fatigue loading lives of 'SAE bracket', 'SAE transmission' and 'Sine Wave'. The damage at loading life of 'SAE transmission' is the least among 3 types. The frequency of damage in case of 'Sine Wave' is 0.7 with the least among 3 fatigue loading life types but this case brings the most possible damage as 80% at the average stress of 0. Natural vibration at this model is analyzed with the orders of 1'st to 5'th and maximum frequency is shown as 701.73 Hz at 5'th order. As the result of this study is applied by the universal joint on chassis part, the prevention on fatigue damage in automotive body and its durability are predicted.

Analysis of the Applicability of Flood Risk Indices According to Flood Damage Types (홍수피해유형별 홍수 위험 지수 적용성 분석)

  • Kim, Myojeong;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • In this study, the applicabilities of flood risk indices using FVI from IPCC, PSR method from OECD, and DPSIR method from EEA, were analyzed. Normalized values of daily maximum rainfall, hourly maximum rainfall, ten minute maximum rainfall, annual precipitation, total days of heavy rainfall (more than 80mm/day), density of population, density of asset, DEM, road statistics, river maintenance ratio, reservoir capacity, supply ratio of water supply and sewerage, and pumping capacity were constructed from 2000 to 2015 for nationwide 113 watersheds, to estimate flood risk indices. The estimated indices were compared to 4 different types of flood damage such as the number of casualties, damage area, the amount of flood damage, and flood frequency. The relationships between flood indices and different flood damage types demonstrated that the flood index using the PSR method shows better results for the amount of flood damage, the number of casualties and damage area, and the flood index using the DPSIR method shows better results for flood frequency.

Study of using the loss rate of bolt pretension as a damage predictor for steel connections

  • Chui-Hsin Chen;Chi-Ming Lai;Ker-Chun Lin;Sheng-Jhih Jhuang;Heui-Yung Chang
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.81-90
    • /
    • 2023
  • The maximum drifts are important to the seismic evaluation of steel buildings and connections, but the information can hardly be obtained from the post-earthquake field investigation. This research studies the feasibility of using the loss rate of bolt pretension as an earthquake damage predictor. Full-scale tests were made on four steel connections using bolted-web-welded-flange details. One connection was unreinforced (UN), another was reinforced with double shear plates (DS), and the other two used reduced beam sections (RBS). The preinstalled strain gauges were used to control the pretensions and monitor the losses of the high-strength bolts. The results showed that the loss rate of bolt pretension was highly related to the damage of the connections. The pretensions lost up to 10% in all the connections at the yield drifts of 0.5% to 1%. After yielding of the connections, the pretensions lost significantly until fracture occurred. The UN and DS connections failed with a maximum drift of 4 %, and the two RBS connections showed better ductility and failed with a maximum drift of 6%. Under the far-field-type loading protocol, the loss rate grew to 60%. On the contrary, the rate for the specimen under near-fault-type loading protocol was about 40%. The loss rate of bolt pretension is therefore recommended to use as an earthquake damage predictor. Additionally, the 10% and 40% loss rates are recommended to predict the limit states of connection yielding and maximum strength, respectively, and to define the performance levels of serviceability and life-safety for the buildings.

An Analysis on Durability Improvement of Twist Run Exercise Equipment (트위스트 런 운동기구의 내구성 향상에 관한 해석)

  • Han, Moon Sik;Cho, Jae Ung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.5
    • /
    • pp.116-122
    • /
    • 2014
  • In this study, 2 kinds of twist run models as exercise equipments are compared by durability analyses of fatigue and vibration. Maximum equivalent stresses are shown as 3.3 MPa and 16.6 MPa at the parts of stress concentrations at models 1 and 2. As the values becomes much lower than yield stress of this models, these models are shown to be safe designs. Model 1 becomes stronger than model 2 at natural frequency analysis. Fatigue lives become lowest at four axis parts and one axis part respectively in cases of models 1 and 2. Maximum damage probability at fatigue is shown to be 2.4% near the average stress of 0 in case of model 1 but this probability becomes 0.6 % in case of model 2. Model 1 has the maximum damage possibility 4 times more than model 2 at these states. As the result of this study is applied by the design of twist run, the prevention on fatigue damage and the durability are predicted.

Structural Analysis of Engine Mounting Bracket (엔진 마운팅 브라켓의 구조해석)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.525-531
    • /
    • 2012
  • This study aims at the structural analysis of vibration and fatigue according to the configuration of engine mount. Maximum equivalent stress or deformation is shown at bracket or case respectively. As harmonic vibration analysis, the maximum displacement amplitude is happened at 4,000Hz. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' or 'Saw tooth' becomes most stable. In case of 'Sample history' or 'Saw tooth' with the average stress of 4,200MPa or 0MPa and the amplitude stress of -3,000MPa or 7MPa, the possibility of maximum damage becomes 70%. This stress state can be shown with 7 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. The structural result of this study can be effectively utilized with the design on engine mount by investigating prevention and durability against its damage.

Study on Structural Safety Analysis of Upper Arm (어퍼암의 구조적 안전성 해석에 대한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.113-125
    • /
    • 2013
  • This study analyzes upper arm as the part of suspension through the structural analyses of fatigue. Maximum displacement is shown at the knuckle joint connected with the bracket of automotive body. Among the cases of nonuniform fatigue loads, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. Maximum life at 'Sample history' or 'SAE transmission' can be shown with 60 or 3.5 times more than 'SAE bracket history' respectively. In case of 'Sample history' with the average stress of $-4{\times}10^4$ to $4{\times}10^4$ MPa and the amplitude stress 0 to $8{\times}10^4$ MPa, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 or 6 times more than the damage possibility of 'SAE Bracket history' or 'SAE transmission'. This study result is applied with the design of upper arm and it can be useful at predicting prevention and durability against its damage.

Laser-induced Damage to Polysilicon Microbridge Component

  • Zhou, Bing;He, Xuan;Li, Bingxuan;Liu, Hexiong;Peng, Kaifei
    • Current Optics and Photonics
    • /
    • v.3 no.6
    • /
    • pp.502-509
    • /
    • 2019
  • Based on the typical pixel structure and parameters of a polysilicon uncooled bolometer, the absorption rate of a polysilicon microbridge infrared detector for 10.6 ㎛ laser energy was calculated through the optical admittance method, and the thermal coupling model of a polysilicon microbridge component irradiated by far infrared laser was established based on theoretical formulas. Then a numerical simulation study was carried out by means of finite element analysis for the actual working environment. It was found that the maximum temperature and maximum stress of the microbridge component are approximately exponentially changing with the laser power of the irradiation respectively and that they increase monotonically. The highest temperature zone of the model is gradually spread by the two corners of the bridge surface that are not connected to the bridge legs, and the maximum stress acts on both sides of the junction of the microbridge legs and the substrate. The mechanism of laser-induced hard damage to polysilicon detectors is the melting damage caused by high temperature. This paper lays the foundation for the subsequent study of the interference mechanism of the laser on working state polysilicon detectors.