• Title/Summary/Keyword: Maximum cutting force

Search Result 75, Processing Time 0.03 seconds

Micro Cutting of Tungsten Carbides with SEM Direct Observation Method

  • jung, Heo-Sung
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.770-779
    • /
    • 2004
  • This paper describes the micro cutting of wear resistant tungsten carbides using PCD (Poly-Crystalline Diamond) cutting tools in performance with SEM (Scanning Electron Microscope) direct observation method. Turning experiments were also carried out on this alloy (V50) using a PCD cutting tool. One of the purposes of this study is to describe clearly the cutting mechanism of tungsten carbides and the behavior of WC particles in the deformation zone in orthogonal micro cutting. Other purposes are to achieve a systematic understanding of machining characteristics and the effects of machining parameters on cutting force, machined surface and tool wear rates by the outer turning of this alloy carried out using the PCD cutting tool during these various cutting conditions. A summary of the results are as follows: (1) From the SEM direct observation in cutting the tungsten carbide, WC particles are broken and come into contact with the tool edge directly. This causes tool wear in which portions scrape the tool in a strong manner. (2) There are two chip formation types. One is where the shear angle is comparatively small and the crack of the shear plane becomes wide. The other is a type where the shear angle is above 45 degrees and the crack of the shear plane does not widen. These differences are caused by the stress condition which gives rise to the friction at the shear plane. (3) The thrust cutting forces tend to increase more rapidly than the principal forces, as the depth of cut and the cutting speed are increased preferably in the orthogonal micro cutting. (4) The tool wear on the flank face was larger than that on the rake face in the orthogonal micro cutting. (5) Three components of cutting force in the conventional turning experiments were different in balance from ordinary cutting such as the cutting of steel or cast iron. Those expressed a large value of thrust force, principal force, and feed force. (6) From the viewpoint of high efficient cutting found within this research, a proper cutting speed was 15 m/min and a proper feed rate was 0.1 mm/rev. In this case, it was found that the tool life of a PCD tool was limited to a distance of approximately 230 m. (7) When the depth of cut was 0.1 mm, there was no influence of the feed rate on the feed force. The feed force tended to decrease, as the cutting distance was long, because the tool was worn and the tool edge retreated. (8) The main tool wear of a PCD tool in this research was due to the flank wear within the maximum value of $V_{max}$ being about 260 $\mu\textrm{m}$.

The Changes of Hardness and Microstructure of Dongchimi according to Different Kinds of Sugar (당의 종류를 달리한 동치미의 경도 변화 및 세포벽 관찰)

  • Ahn, Gee-Jung
    • Culinary science and hospitality research
    • /
    • v.12 no.4 s.31
    • /
    • pp.299-319
    • /
    • 2006
  • The purpose of this study was to investigate the changes of hardness and microstructure of Dongchimi cooked with various sources of sugar(xylitol, xylose, sugar, pear juice). It was fermented at $10^{\circ}C$ for 60 days. The changes of pH in Dongchimi used different kinds of sugar decreased in all samples during the fermentation period, and then showed a slow decrease after 12 days of fermentation. The total acidity of Dongchimi using xylitol arrived slowly at the best tasting condition($0.3\sim0.4$ point) compared with other conditions. The changes of salt content were showed high as compared with other test conditions in 0 day, the day of fermentation. At the early stage of fermentation, the changes of turbidity of Dongchimi using sugar, pear juice were showed high as compared with those of Dongchimi using xylitol, xylose for $5\sim15$ days of fermentation. The maximum cutting force of Chinese radish Dongchimi showed the highest value among al at the 25 th day of ripening and then decreased gradually. The maximum cutting force of Dongchimi using sugar showed the lowest. The calcium and magnesium contents of Dongchimi juice and Chinese radish Dongchimi juice using xylitol were observed high at the early stage of fermentation and showed the highest value during the fermentation period. The microstructure showed disintegration appearance of middle lamella and cell wall during the fermentation period.

  • PDF

A Study on Machinability of Calcium-Deoxidized Steel (1st Report) (Ca탈산강의 피삭성에 관한 연구(제1보))

  • Lee, Yong-Seong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.2
    • /
    • pp.41-46
    • /
    • 1984
  • The machinability of calicium-deoxidized steel is studied in turning by being compared with that of Fe-Si deoxidized steel under a given set of cutting condition. Tool life, cutting force and cutting mechanism are examined on a few sorts of steel. It is found that adhesive layer "Belag" is developed on the cemented carbide tool and the peak value is observed at the cutting speed of 300m/min followed by gradual increase in the thickness of Belag with the increase of cutting speed. the maximum thickness of Belag is also shown at the feed of 0.3mm/rev. On the other hand, the tool life of carbide tool is more favorable than that of high speed steel (SKH 9) in cutting calcium- deoxidized steel. It is considered that the steel deoxidized with Ca-Si shows better machinability a little than that with Fe-Si. However, the cutting force and the shear angle of the former are similar to those of the latter in turning.n turning.

  • PDF

Characteristics of damaged layer in high speed end milling (고속 엔드밀 가공에서 가공변질층의 특성)

  • 김동은
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.326-331
    • /
    • 2000
  • In this study, residual stress was investigated experimentally to evaluate damaged layer in high-sped machining. In machining difficult-to-cut material, residual stress remaining in machined surface was mainly speared as compressive stress. The scale of this damaged layer depends upon cutting speed, feed per tooth and radial cutting depth. Damaged layer was measured by optical microscope. The micro-structure of damaged layer was a mixed maternsite and austenite. depth of damaged layer is increased with increasing of cutting temperature, cutting force and radial depth. On the other hand, that is slightly decreased with decreasing of cutting force. The increase of tool wear causes a shift of the maximum residual stress in machined surface layer.

  • PDF

A Study on the Influence of Cutting Conditions on the Dynamic Component of Cutting Resistance(ll) (절삭저항의 동적성분에 미치는 절삭조건의 영향에 관한 연구(II))

  • Jeon, Eun-Chan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.1 no.2
    • /
    • pp.58-68
    • /
    • 1984
  • In this study, the static and dynamic components of cutting resistance were measured with tool dynamometer (Swiss, pieso-electric type) when S45C, A1-alloy and brass were drilled under the some variable conditions. The results obtained are as follows; 1) The dynamic components of these cutting resistance are not related to the depth of drilled hole. 2) The static and dynamic components of cutting resistance are increased in accordance with the increase of feed and drill diameter. 3) The dynamic components of thrust force are increased in accordance with the increase of spindle speed. 4) The rate of the dynamic component to the static component is 0.3 .approx. 0.5 in torque, 0.1 .approx. 0.2 in thrust force. 5) The characteristic of the tool system is affected in dynamic component of cutting resistance, and the creasted frequency and amplitude of the chip are determined by the crilled materials. 6) The maximum amplitude of the dynamic component is increased proportionally in accordance with the feed rate and the spindle speed.

  • PDF

Comparison of Cutting and Compression Tests for the Texture Measurement of Chinese Cabbage Leaves (절단시험과 압착시험에 의한 배추잎의 조직감 측정 비교)

  • Lee, Cherl-Ho;Hwang, In-Ju
    • Korean Journal of Food Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.749-754
    • /
    • 1988
  • The texture measurement of Chinese cabbage leaves used for Kimchi preparation were con ducted by cutting and compression test and the results were compared to the sensory evaluation. The cutting force of cabbage leaf stalk increased by blanching or salting, and a maximum cutting force was attained by salting in 15% salt solution for 5 hours. The compression force and recovered height measured by compression test of Chinese cabbage leaf stalk decreased by blanching or salting, and the breaking point disappeared. Treatment with $CaCl_2$ solution increased the cutting force compression force and breaking strength of fresh leaves, but the effect disappeared by salting or blanching. Cutting strength could be used as a parameter indicating the hardness and chewiness of salted cabbage. Compression force and breaking strength could indicate the textural changes of blanched leaves, but were not useful for the measurement of hardness and chewiness of salted leave.

  • PDF

A Study on Micro-grooves Cutting Using Flat-end Mill (플랫 엔드밀을 이용한 미세 홈 가공에 관한 연구)

  • 이재일;이채문;이득우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.209-214
    • /
    • 2002
  • Mechanical micro-engineering is an easy and cheap way to fabricate micro-structures. If the application of the conventional machining method using flat-end mill becomes available for the micro-manufacturing process, it will be advanced as an extension of the conventional machining process. In this study, micro-grooves cutting using flat-end mill(($\phi$8) was performed. The characteristics on flat-end milling was investigated to improve machinability of micro-grooves. The experiments were performed according to variations of spindle revolution, depth of cut, and feed rate. Machinability through various cutting conditions was evaluated by surface geometry, tool wear, and cutting force. The results show that micro V-grooves of width(pitch) 29${\mu}{\textrm}{m}$ were acquired by flat-end milling. The maximum and minimum roughness of the wall of grooves was 438 and 67nm, respectively

  • PDF

Machining Characteristics in High Speed Endmill Operation Considering Clearance Angle (엔드밀 가공 시 여유각을 고려한 가공특성)

  • 박정남;고성림
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.43-49
    • /
    • 2004
  • The objective of this research is to investigate the effect of clearance angle on cutting performance in high speed end milling operation. The tool geometry parameters have complex relationship with cutting process parameter. In order to explain the effect of clearance angle, 2D turning operation in lathe and end milling operations are performed. Tools with different clearance angles are manufactured. Cutting forces, machining accuracy and tool life are examined according to the change of clearance angle. As clearance angle increases, cutting force decreases and machining accuracy improves. But it has been proved that there exists the optimal clearance angle according to the diameter of end mill for maximum tool life which is measured by frank wear.

Mechanical Characteristics of Garlic Scapes for Developing Mechanical Garlic Bulbils Harvester (마늘 주아 수확기 개발을 위한 마늘종의 역학적 특성 분석)

  • So J. D.;Kim G. H.;Kwon S. H.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.2 s.109
    • /
    • pp.75-80
    • /
    • 2005
  • Mechanical characteristics of flower stalks (scapes) of garlic such as shear forces, cutting forces, and modulus of elasticities were investigated as a preliminary research to develop a mechanical harvester of garlic bulbils. The average shear forces of garlic scapes was 0.642 N and the maximum and minimum shear forces were 1.42 and 0.25 N, respectively. The shear forces generally increased as the diameter of garlic scapes increased. There was no correlation between the modulus of elasticity and the diameter of garlic scapes and the average modulus of elasticity of garlic scapes was around $2.40\times10^7\;N/m^2$ There was also no correlation between the cutting force and the diameter of garlic scapes. As the downward speed of blade increased, the cutting force of garlic scapes decreased and reversed to increase. The cutting forces of the lower part garlic scapes were lower than those of the upper part. The range of cutting forces of the lower and the upper part of garlic scapes were 3.88-4.04 N and 4.29-4.93 N, respectively.

A Study on In-Process Detection of Chatter Vibration in a Turning Process (선삭가공에 있어서 채터진동의 인프로세스 검출에 관한 연구 (I))

  • Koo, Youn-Yoog;Chung, Eui-Sik;Nam, Gung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.73-81
    • /
    • 1991
  • There have been many studies on chatter vibration in machining but there seems to be no regulations to decide the commencing point of chatter objectively. The development of an objective method which can estimate and detect chatter commencement is very much in need for automatic manufacturing systems, dynamic performance tests for machine tools, so on. In this study, therefore, the estimation and the in-process detection of chatter have been experi- mentally investigated for the turning process. As a result, the commencing point of chatter can be decided from the behavior of the maximum amplitude of the dynamic component of cutting force, where the maximum amplitude is suddenly increasing with the chatter commencement. Then the commencing point of chatter can be estimated practically by this method before the occurrence of excessive vibration. Also, it is possible to detect the occurence of chatter vibration through the in-process measurement, by monitoring the maximum amplitude of the dynamic component of cutting force.

  • PDF