• 제목/요약/키워드: Maximum bending moment

검색결과 244건 처리시간 0.027초

진수후 데크 topside 용접부의 응력 거동 특성에 관한 연구 (A Study on the Characteristic of Stress Behavior of Topside Weldment Welded after Launching)

  • 이동주;신상범
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2010년도 춘계학술발표대회 초록집
    • /
    • pp.58-58
    • /
    • 2010
  • The purpose of this study is to evaluate the structural safety at the topside weldment of hull structure, which was welded after launching. For it, the variations of residual stress and distortion at the topside weldment with loading conditions such as hull girder hogging bending moment after launching and free initial loading state was evaluated by using FEA. And the maximum stress range at the weldment under design loads specified by classification society was evaluated by FEA. In this case, the residual stress and welding distortion at the topside weldment was assumed to be initial imperfection. In accordance with FEA results, regardless of initial loading condition, tensile residual stress was found. However, the residual stress and welding distortion at the topside weldment produced under hogging condition was less than those of topside weldment under free loading state. That is, the amount of residual stress at the topside weldment decreased with an increase in the amount of tension load caused by hogging condition. It was because the compressive thermal strain at the topside weldment produced during welding was reduced by tensile load. However, the maximum stress range at the topside weldment under maximum hull girder bending moment was almost similar regardless of initial loading condition. So, if the problem related to the soundness of weldment is not introduced by initial load, the effect of initial loading condition during welding on fatigue strength of topside weldment could be negligible.

  • PDF

변단면 파일벤트 구조의 수평거동 분석 (Analysis of Laterally Loaded Pile-Bent Structure with Varying Cross-sectional Area)

  • 정상섬;성철규;고준영;김수일
    • 한국지반공학회논문집
    • /
    • 제25권4호
    • /
    • pp.69-75
    • /
    • 2009
  • 본 연구에서는 수평하중을 받는 파일벤트(pile-bent) 구조의 변단면에 따른 거동특성을 분석하기 위하여 beam-column 모델을 적용하여 수평변위 및 모멘트, 부재력(응력)을 단일단면 파일벤트 구조의 수평거동과 비교하였다. 분석결과 지표면에서 변단면 파일벤트 구조의 수평변위량이 동일하중 재하시 단일형 파일벤트 구조의 수평변위량보다 커지는 경향을 보였으나, 동일지반, 동일하중조건의 경우에는 변단면 존재유무에 관계없이 최대휨모멘트 발생위치는 일정한 경향을 보였다. 또한 말뚝재료의 부재력 검토 결과 파일벤트 구조의 변단면 부분에서의 부재력이 최대침모멘트 발생 깊이에서의 부재력보다 큰 것으로 나타났다. 이는 일체형 말뚝의 구조적 특성으로 최대침모멘트 발생위치보다 변단면 부분의 단면축소로 인해 취약해지기 때문에 변단면 발생부분에 대한 보강이 필수적으로 요구됨을 알 수 있었다.

Effective Punching Shear and Moment Capacity of Flat Plate-Column Connection with Shear Reinforcements for Lateral Loading

  • Song, Jin-Kyu;Kim, Ju-Bum;Song, Ho-Bum;Song, Jeong-Won
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.19-29
    • /
    • 2012
  • In this study, three isolated interior flat slab-column connections that include three types of shear reinforcement details; stirrup, shear stud and shear band were tested under reversed cyclic lateral loading to observe the capacity of slab-column connections. These reinforced joints are 2/3 scale miniatures designed to have identical punching capacities. These experiments showed that the flexural failure mode appears in most specimens while the maximum unbalanced moment and energy absorbing capacity increases effectively, with the exception of an unreinforced standard specimen. Finally, the results of the experiments, as wel l as those of experiments previously carried out by researchers, are applied to the eccentricity shear stress model presented in ACI 318-08. The failure mode is therefore defined in this study by considering the upper limits for punching shear and unbalanced moment. In addition, an intensity factor is proposed for effective widths of slabs that carry an unbalanced moment delivered by bending.

기둥으로 지지된 슬래브교(橋)의 모멘트 산정(算定)에 관한 연구(硏究) (Simplified Bending Moment Analysis in Slab Bridges supported by Column Type Piers)

  • 김영인;이채규;김우
    • 대한토목학회논문집
    • /
    • 제12권3호
    • /
    • pp.17-24
    • /
    • 1992
  • 철근(鐵筋)콘크리트 슬래브교(橋) 설계시(設計時) 교각(橋脚)을 T형 및 ${\Pi}$형식으로 취하는 것보다 기둥만으로 슬래브를 직접 지지(支持)하도록 함으로써 유효공간(有效空間) 확보 뿐만 아니라 슬래브 자체(自體)의 내하력(耐荷力)을 이용함으로써 구조적(構造的)인 효율측면(效率側面)에도 유리하다. 그러나 기둥으로 지지된 슬래브교의 설계를 위한 휨모멘트계산은 아직 체계화(體系化)되어 있지 않은 상태이다. 중간지지점(中間支持點)의 종방향(縱方向) 최대휨모멘트를 유효폭개념(有效幅槪念)을 적용하여 가상지간(假像支間)을 이용한 단순보해석으로 간단히 구할 수 있는 방법(方法)에 대하여 연구하고 유효폭을 수식화(數式化)하였다. 주요변수(主要變數)는 지간(支間), 교폭(橋幅), 슬래브 두께 및 기둥단면(斷面)으로 하고 유한요소법(有限要素法)을 이용하여 단면력(斷面力)의 변화를 조사하였다.

  • PDF

P.S.C거더 교량의 적정 가로보 설계 (An Optimal Design of Cross Beam of P.S.C Girder Bridge)

  • 최창근;김경호;이계희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.389-396
    • /
    • 2000
  • A three-dimensional finite element dynamic analysis was conducted to evaluate the effects of reducing cross beams from a simply supported straight P.S.C girder bridge. Two analyses were performed on the P.S.C girder bridge; one with 7 cross beams which is commonly used as current standard, and the other with 3 cross beams. A frequency analysis was conducted first in order to establish the dynamic characteristics of the bridge and determine an appropriate time step to use in the time history analyses. To assess the function and effectiveness of the cross beams, time history analysis was conducted for aforementioned two analysis cases. In the analysis, the complete model was subjected to a loading condition corresponding to the one passing truck loading. Several results of deflection, bending moment and shear forces were compared for two cases. From the analysis results, reduction of cross beams was found to have only a minimum effect on the response of the bridge. The maximum deck slab bending moment was found to decrease. This decrease should result in smaller flexural crack widths in the deck slab, which may lead to an improved deck performance.

  • PDF

다층지반에서의 수직구 동적 거동 분석 (A Study on the Dynamic Behavior of Vertical Shaft in Multi-Layered Soil)

  • 김용민;정상섬;김경열;이용희
    • 대한토목학회논문집
    • /
    • 제31권4C호
    • /
    • pp.109-116
    • /
    • 2011
  • 본 연구에서는 수직구의 동적 거동특성 분석을 위하여 지반조건, 입력하중 특성, 하중 방향 등의 주요 인자를 고려하여 3차원 유한요소해석을 수행하였다. 그 결과로, 다층지반에 시공된 수직구는 하부 단단한 지층이 두꺼울수록 전단력과 휨모멘트가 최대 1.7배 크게 발생되며, 지층이 변화하는 경계면에서 가장 큰 단면력이 발생된다. 또한 입력하중의 주기 특성에 따라 수직구 동적거동은 서로 다르며, 수직구와 주변지반에서의 가속도 증폭 비율은 주변지반에서 최대 3배 이상 크게 나타났다.

Soil -structure interaction analysis of a building frame supported on piled raft

  • Chore, H.S.;Siddiqui, M.J.
    • Coupled systems mechanics
    • /
    • 제5권1호
    • /
    • pp.41-58
    • /
    • 2016
  • The study deals with physical modeling of a typical building frame resting on pile raft foundation and embedded in cohesive soil mass using finite element based software ETABS. Both- the elements of superstructure and substructure (i.e., foundation) including soil is assumed to remain in elastic state at all the time. The raft is modelled as a thin plate and the pile and soils are treated as interactive springs. Both- the resistance of the piles as well as that of raft base - are incorporated into the model. Interactions between raft-soil-pile are computed. The proposed method makes it possible to solve the problems of uniformly and large non-uniformly arranged piled rafts in a time saving way using finite element based software ETABS. The effect of the various parameters of the pile raft foundation such as thickness of raft and pile diameter is evaluated on the response of superstructure. The response included the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase displacement and increase the absolute maximum positive and negative moments. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in the present study.

비선형을 고려한 파랑중 선체 운동과 강도 응답에 관한 연구 (A Study on the Response of the Motions and Strength of Ships in Waves taking account of Non-linerities)

  • 김창렬;김진안;김사수;홍봉기;배동명
    • 대한조선학회지
    • /
    • 제24권1호
    • /
    • pp.51-66
    • /
    • 1987
  • In this paper, the authors investigate theoretically the motion and longitudinal strength of ships among waves talking account of the effects of nonlinearities such as the hull shape, bottom emergence, and hydrodynamic impact. Incidentally the ship is treated as an elastic beam in heading wave condition regarding characteristics of slamming and whipping-according to the variation in the range of a quarter length of the ship forward and the increase of the elastic modes up to 4-th vibration mode were investigated by the present theory. Calculations are performed for 97m container ship and its validity is confirmed by a series of model tests. Conclusions obtained are as follows; 1) Acceleration and pressure estimated by the present theory are in good accordance with experiments. 2) The present non-linear theory may be applied for estimating longitudinal bending moment of ships in slamming and whipping conditions. 3) In investigation of the characteristic in response according to shape variation for parts under draft and vow-flare in the range of a quarter length of the ship forward, dynamic responses due to the former were much more conspicuous than those due to the later. 4) In the maximum bending moment, the considering case up to 2-the mode are larger, about $10{\sim}15%$, than that up to 4-th mode.

  • PDF

모래지반에서 반복수평하중을 받는 항타말뚝의 거동 (Behavior of Laterally Cyclic Loaded Piles Driven into Sand)

  • 백규호;박원우;김영준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 세계 도시지반공학 심포지엄
    • /
    • pp.913-922
    • /
    • 2009
  • Fourteen model pile load tests using a calibration chamber and instrumented model pile were preformed to investigate the variation of the behaviors of driven piles in sands with soil and lateral cyclic loading conditions. Results of the model tests showed that the first loading cycle generated more than 70% of the pile head rotation developed for 50 lateral loading cycles. Lateral cyclic loading also made an increase of the ultimate lateral load capacity of piles for $K_0$=0.4 and an decrease for $K_0$ higher than 0.4. Higher portion of the increase or decrease in the ultimate lateral load capacity by lateral cyclic loading was generated for the first loading cycle due to densification of loosening of the soil around the pile by lateral cyclic loading. It was also observed that a two-way cyclic loading caused higher ultimate lateral load capacity of driven piles than a one-way cyclic loading. When the pile was in the ultimate state, the maximum bending moment developed in the pile increased with increasing $K_0$ value of soil and was insensitive to the magnitude and number of lateral cyclic loading.

  • PDF

Interactive analysis of a building fame resting on pile foundation

  • Chore, H.S.
    • Coupled systems mechanics
    • /
    • 제3권4호
    • /
    • pp.367-384
    • /
    • 2014
  • The study deals with the physical modeling of a typical single storeyed building frame resting on pile foundation and embedded in cohesive soil mass using the finite element based software SAP-IV. Two groups of piles comprising two and three piles, with series and parallel arrangement thereof, are considered. The slab provided at top and bottom of the frame along with the pile cap is idealized as four noded and two dimensional thin shell elements. The beams and columns of the frame, and piles are modeled using two noded one dimensional beam-column element. The soil is modeled using closely spaced discrete linear springs. A parametric study is carried out to investigate the effect of various parameters of the pile foundation, such as spacing in a group and number of piles in a group, on the response of superstructure. The response considered includes the displacement at the top of the frame and bending moment in columns. The soil-structure interaction effect is found to increase the displacement in the range of 38 -133% and to increase the absolute maximum positive and negative moments in the column in the range of 2-12% and 2-11%. The effect of the soil- structure interaction is observed to be significant for the type of foundation and soil considered in this study. The results obtained are compared further with those of Chore et al. (2010), wherein different idealizations were used for modeling the superstructure frame and sub-structure elements (foundation). While fair agreement is observed in the results in either study, the trend of the results obtained in both studies is also same.